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of the governing equations to allow for flow in separated regions. When a
turbulence model originally developed f or attached boundary layers was
used , poor agreement was found between calculations and data . However ,
when a modified turb i lence model , based upon computational turbulence
studies and recent experimental data was used , considerably better agree-
ment was obtained . The original weak interaction solution proc edure ,

— 
the nodifications made under the current effort , and sample calculations
are presented in this report .~ ’In the second approach the feasibility of
using a fully implicit Navier-Stokes solution procedure for the inter-
action problem was investigated. The results indicate that the fXxlly
implicit procedure is a promising one , however , further development work ,
particularly in regard to shock representation, is required.
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‘lSECTION I
INTRODUCTION

Viscous-inviscid interaction flow fields are common occurrences found
Loth on high Mach number flight vehicles and in supersonic or transonic turbo-
machinery. In general, the interaction may result either from the impingement
of a shock wave upon a boundary layer or from a boundary layer developing
along a compression surface. The resulting flow field is a complex phenomenon
governed by t h e  mutu al interaction of a viscous inner shear layer and a
nominally inv isc id outer flow. Since viscous-inviscid interactions may lead
t o  hig h drag losses , loss of control effectiveness, and very high local
;leat ing rates , and since such interactions commonly occur on high Mach number
f l ig h t v e h i c l es , a method to predict  th e  interact ion flow field accurately
would be a valuable asset to t i e  vehicle design team . The interact ion flow
field occurr ing in most cases of practical interest  involves a t urbulent
boundary layer and , thus , a calculation procedure capable of accurately
node-li n t’ t ur bulent boundary layer development shoul d form the basis of th e
in te rac t ion  predict ion procedure .

Following Pr andtl , the now classical method of solving viscous boun dary
lay- -s-typ e problems r i r s t  calculates a streamwise pressure distr ibution from
;~urelv inviscid considerations and then calculates the boundary layer develop-
ment under the influence ol’ this inviscid pressure distribution . No attempt
I : - ’  al ’ ’ ‘ 0 :nl’r’ - ’ 4he i nvi ;~ei  I ‘nr ’,’;olre i ;cleu11 ai ion for vi:~ o11: ~‘Y e r
0 1 1  1 b~~I I II ’ I TI lie 1 OflhIilaI’V ibt\’~’r 1 ’ ’ 1011. ( h O  ChI . 11v , . ‘ u h  a WI -

~~~: Cr rn-n—
0 1111 0 ra~i he vaIl i i  only if  t i n -  r n - - . - ‘UI : P PUI i on caloulak ed j 1101U 110

is a :1I1 ’~’io .i - ’n ’ lv ‘0(1 :U’T P r OX I ! ; O 1011 10 1110 P V i ’ ’ ’ u l ’ i i i , - —
i i  u li-n whi ch  no ~;al1v ( i ~ Cb 1 I’0 . In many c11 n~: 0 l  p r n -  I nIl 1 n - u- c ’ . , 

, he

~~~~~~~~ pro::1n-c ti: ‘1 11 On I ; i ~~~~~’ ’ I l 1 1 i ’n ’ ipp i’o x ;r ’a 1  ion to p l v ; i  c-- ,]

roal i  V a: I i n  I ;o~~o ‘ n ’ c 1’~ he e l ; , ’o ~c-b t1 b w O — : b  - -p PVO ;’~’ 1100  1: va lId .  How —
r , 1111 ceo a ; flow oi’ b i n 4 in ;; :  v iii H; are ‘ i n  I rong ln rn -,

lie ‘~~;,~~~ebl ;  1 la, ’i ’mi -; ; ’ o I l e d  n - n ’  he I - e l ;  , ; 1 l I - : ’nc- ’ tm . 1 l 1 h I 0 i e 1 i ’ l v
- o I’’tU:’ ’ h o P1 ”’ , ’ , ’b l i ’ i ’ ii i :  S I 1 T U I  1 0 1  ‘ t l o i ] 1 e l  I ‘ n ( b  i n  - 01:0011: wal l - h e ~
C’ In in Oi ’i’I011:; - ‘ri’ni’ a ; i I  I hese  -a :’ - . he e l a . n’ical  l W e — , ;1  ‘p l o i ,iar’;

layer n aIl  In in n  n i -C  o l u m e  11 i ;wal i H . ‘ I i i  o : hn1Y- ; wa -c l’cunlnry I ayi-r
Ii ’ ‘ ‘ ~~~ ‘ 1011 i ’ P T ’ 0 0 0 I l ’ a eoi ;c ’ ; i ~ T 1’  OH COIl 1(1 Ci fl0 ‘ ion flow. p~-0 . n l d h

a low , n p r - l i e 4 
~ oi~ procedure  v l i i Y ’  r an  1~- ’ i i : - ’]  v i ’  h nI  n I I  1- ’;;” ’ ‘- ‘~ i: ’ n r c - u n ’

lie ;-- ii t un] i 11 c’i’ao I ion I’’ Wi ’c ’Il t PT ’ II  I I - ’’ 0 I ; T ’ C U ’ f low 1111 be o i l  or

1 I’-  i ’ ~- i  . ; ‘ i l  low .

Pod 101 ’ - -Clii ’ ¶ loll I OW f i e l d  p i c ’ , - - lu r e . ; w i c li Ph i’, - h ’en l- - n - 1  c ’p i ’i  a!1.I I i i ’ ’

I in t h ~ em-n li i era ’ ii re have -x~ ‘lI I ’l 1 ‘rn; i ’-il ~‘Oi;lb lal” . l a ye r
I ‘c i’’, ’ I : trc’Oli i l  ‘nm he 10111111.11 .1 III 0 r ;L ‘ 011 nI ; -1101- 1c’ l ln • l ln ,l i-r  i

‘h e  1-ni i i i l i i - ’  l av ’-r equa l 0 11 . - w 1 i t c l i  l’ ,u c , ’  ;~~ i 1~ ~l ;e  1111101’ ‘110W l i ol l

arc :oive,1 h imul l an - c u 1 :I l \  wI Ii IL”  i - f l I n t  1 0; ;  i ’ ’ b ’ l ’ ’ ’ ld  in :, I i i ’ on -u’  l o w  H i t - i - I

— —- —- a- a ,~~~~~~ -‘ -. - - - -  
~~~~-- — -rn -- -- - —
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tim: ine1ud i~i,- ~l e  required mutual in l erac 4 ion in ‘he solution procels . —

~o t ; I 1 i 0~g i l l ’ -ran 1 ion solutions of lie l’oundary lay er  equal ions are ba;;ed
n o -rn -n ’ 1111110 upon l ; e  original woi’l~ of ’ Crooc;’ and l ee: ( R ef .  13) is s~O~1 i —

I i  - ‘ 1  b’, 100 1 and Ree\res ( R e f .  ~~‘I )  . In bri ‘1 , l,~- c; ;  aaii Reeve ; solved IL set .
o I ’ 11 1 1 -  - -~i’;il Ila ill i  liar boundary 11 aver euua 4 ions ~i : i l c -r l~i- ‘ci rill I r a int  ha I he
P ow 111101- - a$ he out er n Ige 01 I he lioundary Ilayer a: ‘ic c-m Ile-I  by he

1-inini l a r i -  l a u - r  - iuat  ions be ec~ ii ii o t h e  flow angle at t h e  out er edge of I he
boundary layer as ie4 ermined by tile inviscid flow field equat ions. This
constraint Was ox’pre:sed throug h an equation relating the  outer edge flow
anglc as de ’rn-rr ’irie il be t h e  eont inui ’ y equat ion to the angle delermined  by

l ie  Prand ’ 1—Meyer law. T i l l ’  use of an au di t  ional equat ion allowed he s 4 re - cr —
W 1 s e  S I  a ’ i - ’ Pi’e;I ;1U1’o 1 i 1  r ibu t  ion I o he c’alculat ed s inad ’ aneoui-i :; wil ,h I l ’ ’

boundary layer developmen ’ and , ‘ hut ; , ‘ lie st rei’w~~ise ~~~k at ic pre:sure ill :—
r ibut  ion  OSIOP - e l  an ram of ’  I h e  solu t I on a~ it should. The Lees and R I - C O O :

roe-ldure r e su l t ed  in fairly 000;l P i ’ O - i i C i  ions of :1 a4 Ic pressure hmo u gi i
in ’ ornc~ ion re~ ion for laminar boundary layer development on adiahat ic wail:
however , l ie  p i n - l I d  ion of skin  f r i c t ion, although quali ta t ively corr ect ,
:lIewe, 1 :i - ni f i c a n t  q u a nt i t a t ive disagreemenl wit -h  experiment al da ’ a. The
I,eo~; and Reeves lot  egral I heory was ext -ended t-o nonadiabat Ic walls by
Kl ineber g and Lees (Ref .  d 1i )  and Tiolden ( R e f .  70) .

Al though the analyse:I of Refs . 27 , 22 and ~14 have proven capable of
pred ict  ing I he :1 reaniwise pressure d i s t r i bu t i on  through the  int eract ion
region , ‘ hey are all based upon m t  e~ ral solut ions of t h e  equ ations and ,
‘ hus , are l imi t ed  in t h e i r  generality.  A more general solution for the
in  eraction problem has been developed b~ Reyhner and Flugge—Lot : ( R e f .  ;i)
who replaced I h e  int egral boundary layer equat ions wit -h t he  boundary layer
ram ’ lal di f f e r en t ial equat ions of motion t hus eliminat i ng t h e  consk raint a
imposed by the  profile assuxnp t ions required by m l  eei’al solut ions.  Sinc e
I he boundary layer equations calculated by spat ial marching procedure: are
un sI  able in regions of reversed flow , t h e  f in i t e  d i f fe rence  aj on ;p~ was
modi f ied so t hat in t h e  separated f low region t h e  st reamwi se  convec lye
t erns were ignored or given a false posit ive convection velocit y to  main-
t a i n nunerical st a b i l i ty .  Being a f~fll f i n i t e— d i f fo r e n c e  solution ra iler
t han an int egra l  solut ion , t h e  Reyhner  and Flu g o - T o ’ : procedure is more
seneral ‘ F ~an in ’ egral calculat ion procedures however , like m l  egral pro-
ue d ;ir ”rn , t h e  Revhner-Flu gge— Lot :  procedure is st i ll  confi ned t o  laminar
flow .

A solut ion of the turbulent b oundary layer equations for strong inter-
-actions has been presented by Bertke , Werle and Polaic ( R e f .  ~

) who solved a
set of equations originally developed by Werle and Vatsa (Ref .  ~Y~ ) for laminar
fl ows . The method of Ref . ~~ is apseudo—time relaxation scheme that allows adirect
spec i f i ca t ion  of the downstream bound ary condit ions wi thout hav ing  t o  ad iu ;I l

2 
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initial parameters. A turbulence model that had been developed for attached
weak interaction boundary layer flows was used. When this method was applied
to the turbulent free interaction problem , the calculated plat eau pressures
were found to be approximately 30 percent higher than available dat a correla-
tions. Bertke , Werle , and Polak attributed the discrepancy in predicted
plateau pressure to limitations of the turbulence model used . A broad review
of shock wave—boun d ary layer interaction solutions has been compiled byH ankey ( R e f .  -j ) .

- cough un ’- ii recent ly  nuI er idhi l  vi :- ‘o’l;’ — in - ’ i  sd I in ’ eract ion
cu l sula ’ ions were based almos en ’ i rely ui-rn; CX “0 l e l  h~~mndary layer pro—
-c c- h;res , - he rapid li velnnu r en 1 of lie ’ I l O l L ’  em I _ l -?c~cni ~

‘
~~~~~

‘ and -corp ’i er
c- ir -u7 i l l - ”  now have made it  PrIce ’ 1- I l L 1  ‘ C -cml v ‘ n v i ’ - r — ’ e;-: c- : caleula’ l C l ’l

proce InTo . he III ’ er ac l o l l  p r o ; - l - - o .  in n e ‘h o  1avi-~r— ’ c~--e: - e- :ua ’ 1 ( 1 :

l c’r’i (-:enl the exac t c ain ’ ions  of l~c ii :; , ‘ h e y  con’ am no - c py1-cxir- ~’ ‘( : 1, ;

Pan ‘ hose !I;ad . 1 j r co -noer ’ ion wi  ‘P  urbulence I’ c - i - -  11, ’ • For - X e  vi-
-c:;nn- n ’ ion of’ co ns ’ an p r e ; - ’lr e a ’ any stre~~~ ise 5 11 1 ’ I C O  w: .j r I , is

nIl omen in ~~~~ l-euniceo - layer procedures and whi ~l ; 1 :11: 1 0 10

error in , UP , r c Ion l  c’ flow is relieved in ‘ he ilavie u - — ‘ u c-n - apprc-n-i.. Flirt P —

arrmoxiro’c ion of the  convert  lye ‘eros in :er cro - - -i f lcw me -ions

w h i c h  is ne rossa ry  for numerical s ’ u i ’i l  H p in be ’in i-tm :; i ap - - r  ~ l J - ’’1iIt I i on s

15 nC me ;uiare;1 in a~-i- -m — :’’ ok~ s ealdIl l  a ’ on: • 71 u: , t h e  -n:n-- - - -su- 11 C - n

ii:- ’ I ‘o solve ‘ he  in ’ emne ’ ion proi ’J ,a a Pavi - - C — ’ I -I ’S cal ‘nd cc ’ Jo n  r -

oc- ’ cc ’- ’r r c ’ni c c i  i -v anrrc-xir’a 4 ions w L I  tm - - r- - Ill n - - I  H r a si ldOes h :~ ii
l, c s 1 l r 1~ layer solu’ ion.

The a lvan ’ nec: of 4 h r ’  P avier— ~ ’ oRe: : i 1114 ic -n  11111: ’ be I t l ; c t v — - - j  a - cci r~- t
- - -cm ’ a i r  -l .i :idvan ’ages such as co-Ic corrriiexi’ v , ec” ie run ‘ H- o a :; - 1 c ’c- I-
s’c’ra- -: re li i]remen ’ s. Navier—Htekes- caleula’ lu- n r r cr ’- iui -: in  -e n ’- r - t J
u - l oir e  rome code development ‘ i sv- han Ic I c - un- l am : , ’ 110c r rrc’~~ -~ 1111-1- : • In
a d l i ’  ion , P av ie r_ St oke s  procedures ~rir,- r e - i l l i r e  increased cor~pui or :‘ i - i n c

and increased corsili ’ er nm ~ime to oh’aj n  a successful solution. A ron-i - i—
era ’- ion of hot ii t h e  advan ’ ages and di:aclvan~ a,c’n-~ of Navi - - r — ; ° ( -i c :  :oluit l o l l ; ;

indicat e hat  I lie po ’ en ’ lally increased accuracy of t h i s  approach scat-
well balance out- I he Increased requirement s in ci orTnUt er storage a o l  r ;;ii

‘ ime . W i t  h these consicieral ions in mind I’ seer;: reasonable ~o cc-ti ’ .1 tr i o
develop ;--ent of both appro~.ches ‘o I he ifl i ’i’ n I  iOfl i-r ot-Icr ;  a ’ I he pr c- ;;en ’
‘i;-’e.

golu- ion, ; of’ the Pavi er —f ’t  oRes equal ion: for sho d — w c - ,-e— ur l ’i je~; ’
boundary  layer flow int erac t ions have been i-re:;’ n ’ ed mc- ’ 1en ly by a ‘carl I ’:;
of an ’ hors including ‘J I lc’ox (Ref. 5 6) ,  Baldwin and Parroi’rI ac~ (R e  H . d ) , ao l
dhang anul Harikey (Ref. 1i7). In Ref. c(, Wilcox combined an ox-ph d ’

3—
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f i r st  — c r - I c r  f b i  e — u I i f t e r c - n c  - - : - - luo r ’ , - - w i 4  P Tt ‘I man’ s- I u r u n u l  e~iee r ’ ;u ;dc-l
( R e f .  l~h ~o p mu ’ ,1i~~ ‘ wu :— Iiscen:l ional ‘ , i r b l i l , -n 4 super sonic  fl ow: wi P
sep-nra 4 ion. All bough Wilcox was sliced; ;:  :lii in oh4 c m i  : i - ’ flow t H e l l ; ;on t —
10115 , ‘ he r r - - h i c  c- -I  sum fac e pr o - - su n u -  - Li :1 ribut ion discOrc ’cI ,l  ~; I ~ l . i  f lrn tu i ’ I:.

Wi ’ T i  0X-~ iIr i :”e: i  al - I t ’ ;i • Tn a rome  recieti~ work , 5:1 1~1w i n  t n - I  1- ineflu r: ’; ac - -
( R ef .  ‘i ) - t i - i - l i ’  I l-Ia ---flo n~-’ack ’ s two— si op second—or;k-r explici’ Sln”i i - n — f l ’  oge ,
- -n - 0 I ‘ c he :h -ck wav e— ’ urbud erH boundary layer l o t  erae t Ion pu-i I n

~‘J’ he’ i - h  1-0 P a r i xing  l e nd  P iur i;uience rIco ilel and a ‘ W o— , ’ lU It t  on n c  - —

me v-I o: ‘ ‘ i ri ’olcncc ; Wer e used , nd ’ her turbulence mc I - h  -nr c- In c -I - 1 1( 1W
Hi  elI: ‘ h i  I t - r o e -  I well Wi ’ h :reas;ir emen ’ : • dhcng ao l  I lanke’,- ni-i-li e l  - I c
e’-,rnTl:c’; 4 Wo— icre :islc-nal i u ’ ; e —d - -pen ,Ien Ice ’ boil of Ha ’flc -m: ’;ac -; t o  ‘Ice in ’ - -r-
ae ’ :011 1 1 W  fic l i  p~-ob her - U , ;ine  :111 - - - i b ;  vi ‘ - ‘0 , ; !  \‘ l ’;O ,lei wl i c h  - c l l i w - - l f r i  a
1 c c  l I - I . e  re ;;pons - of he  ‘ u i r l ’ i i I , ’i u ’ - - ‘ -s I iu e  :u - I -  I - n , s ’ s - - mo ‘c - l ’ s - ’r:e Pr0~I . ;li r ’?
n T t - I 1 - ’O ’ ‘ OIl ’ 15 ‘ha” i — ‘~-: l :’  l -  of s ’ ronn in’ - ‘1 cc 4 i n ,- - , -P - ; m - u I J : l .  ;

Ic: - - . A ma ’ e 1-c- l I t ’ i on  wi: 111 ’ ro I c ; c o I  ‘ o I ’ m -; ‘ he - I - b , :ce;O; 1 y - - xrn 0—

‘n’ Hcd i ’: Hi’o~’; ‘ l i e  value a ’ t h e  st ar o: ’ ‘ li e i n ’ ‘--a’~1 ion  ow-; - i  he  lo-e ;i]
o ;‘,li  i l l - i - i  ‘n- value w I ‘ It  a 1 1 10  IcI cle dor m -I l l ’ ‘ I 0 1 l ie  I c l i i i  :111’ ; ih , ’ ‘m I l l ‘ —

es ’  • U ’ ih i , c i ~~~ ‘he  rolaxc’ i on 510101 ‘or c 1 1 ’ , os i ’  v , Thn~ -~~~ cc:; I I lani-ce’ .
oh ’ ci 1l~~I i -r e - l i ’’ Ions of’ a ‘-n i es of ‘O5Tt~~’- - , 5  i -Cc: ; c’o~’~ - u ‘I ow. ’ w I - i l ;  W - c’ ; I i ;
vio l ag;’- - - -r’;’:;- wi Ii t h e  ‘-xmer~ m;-n ’ a1 In 4 c of Law ( R e f .  H i ) .  ‘A i’ - l’ ” ’ ’Oi ’ lf l ,
‘P ing , Halfl- ; - ’v and :1W (see. have compared in ’ - - t i  ci  i onS for a s- -mi - ‘: 0 :

’

v-’i 1 1 ’  ;hoc e wave— ; ’o ;in lci’y layer i:;’ ‘l’IIC ’ 10115 W i ’  P - O -T iI i ’ i : -C : i ’  ccl - Ia ’  a.
‘coal :u , :oo,I a dl’ - ’- ’m’- ‘‘ ‘ was obt ab el  1 0 ’ We ’ll he cclcucl;c ‘ Sc:; : ccii 1 I ; e  - xi’er I —

lie ::at~i -~‘~~; 1t  oRes solu ’ ions 15 scu: ;— ’;I in I he previous paragi’Icp i Wei ’ cli
ba;- e - i  upon an explicit  di .P’ercnce scheme for solving the un:4 only Hors of
t~~~’ cev- rn in,-c -4ua : ion s .  An initial flow field is assumed and I h o cctl clll ; 1. —
• Ion ‘ hen proceeds In ‘ ime unt 11 a c ’ c-ach y at  at e Is reached. 11c-we-v , ’~’ , - ‘ x i  i -  I t
liu Lr - ’m ldccl  procedure ’ of I his vp;’ are subject t o  one or more ~~ 4 cc l i i  l it
m - -; ‘t  v i  ‘ ions on I he s-i ce ci ’ th e  In; - s tep relat i ve o the  limit ial mcci ;  s i  ice.

hese s ’ abilll  p l i mit s  usually correspond to the  well known Conrad ; —

; “~ - - I n  l c 1 s— 1 , O W V  (CF’ l ’t condil ion and in some sche :’os t o an addit i onal .  s’ nu llity
, 0 ~i - l j I  l e o  ar i s i n~ from V i ; l dOl i ; I  errs . These sI ab Ih it  y re st  m imI ions cv- ;  ]OWOI’

cod-cnu ’ a ional ef f ic iency by i:-Tpen1nl~ a smaller I ime ;c ’ ep th a n  would he
o ’ :- - - - -rwise desirable . Sinc e th i s rest r i c t i o n  becomes more and more :1 r inoen I
cc ;— the  spa ’ m l  drid is re f ined , t h e  rcs ’ r i c t  ion can become par ’ lcuJ ariy
l ’u r i ’n s o r . i - in ‘~~e cialculal ion of a turbulent  boundary layer wlic’re a ni -my
f i n e  :‘;esh near ‘ h e  wall mccv he requireul .  In coot m a l t  I o most expl ic i t

1’ - ’ ’ h ind s  , I r~~l I ci’~, r;e t Pods C e n- i  * o T ’e s t c l- i e  for large ime s ’ ;p: and
I ; er ’  o u - c- o~~ fe~ - I lie p1-o n”- -: t of ;I l1h 51 an t i ccl bne rease;  in contpul at  bonal

‘ ‘ “ ‘ i r l - ’n ’’; . ‘. I ; - ’n I he i-mes on ’ work w a ;  lu l l i n t  ed , no impli c” i ’  Navi er— , c ’ o P , -:
pin - - ’ - - - h i m- - fe-i ’ i- r - h  i - t  I ~~c I lie shock wa’ec ’—l ei iu i i l :cry I ayem 1 :i~ c -rac ’ ion flow
‘ ‘ 1  old Pad T ie e l i  ri _ pci oil . i n I he open lii ‘ma ’ i u r e  and i :;  vieW of I he P0 1 u ’ l l I  i :tl
ho:ui - ’ ’ i 4  II - c s ; ; n r i a t  - - 1  w i t h  i s i” I i d i  I ire ’ I ; e - h ; I , I ’  W ; u , ’ i leCi le il  o -cirl- co
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‘I
li ’ ;i i ’T I H ’  4 ecli nLiiie t o  t h i s  i-vol - l i ’s ’ . I b i s  appl!ca ’ Ion ri -i -r o s e n’ , ’ a ~~‘c: i i  1 1 1 4 . ,’

:c; t - c ’ le ’ -r:-dne I f ’  b ce  pc- O l d ’  ial l - - - : i e t ’ i I  of liiiplicil r e ’ l’c I: cc:ni be
~- -n1 - ‘ - I  I n  an i n ’ orac 4 I on  prc -i - i ’r . If i ’ a-i-i- -cr.’- h -c ’ sobs ’ ao l lal b- -I l l - ”! -

coc :1 I be “- -‘ ;~~~ i , : - ’d , ‘ h en fti ’ lll’ - ’ w i -- m I; mecilil  be a i r - I  ‘ o~ ’ci’ -i  Ie vol ri- j ce ‘ h u e
In — iS - c l ot c -n t : ’ ion  11010’ ion proc -‘-h;r ’ t ; a - I- ’ , I i -o ‘ cr1.

l inc e 1;~ l iW Ia’ ion of lh c  i-rosen’ work ,a Ied!cn5 ;’ie in  w h i r l .  n i sen i s
I c-i’s’,: a~’’ ‘ r e nt e d  intplici’ ly and convec ’ ive err;: are ti’ea’ el explici’ l~.-
i:as lc ’en i-~-e :enf ed by MacCorrcccck (Ref . so).  The present ya ’sier— :’ ekes
i n  :‘s t I. ‘cc ’ ic- :; ceo ’ crc on a ñilly ir l i e i ’  procedure , ‘ 1 , -s ~~l~ i— J i r  ‘c- r cional
TI ci-li ‘ -!‘ d :en .l i: ;- ’ar Ti :; e— tependent (~-Tr; ) ‘ ccl i i i  i i i ’, 1 e-5~ 1; i -e l  i y  br i  1ev

I ‘‘c ~cnnl,d ( R e f  • i)  . The r;e’ he l l  has been ox ’ en d o i  ‘ c- ‘u~-i’:~ en’ : 7  c-v 1n ’

Tb - ’ I c - - , 1-Imponald an-I -l ih e l l  flO ( R e f .  I -~~ ao l I ; -  f low in  cc”- - ‘:: r l :  by
1 5 1 - 1 i n ’ , iscflc ;;t 5 i  and n i f le ’-,- ( R e f .  111). In 4 1 v- ::a-c -s - u ’ — , ’’ cs c :  p en ’ c r c

‘ l ie r”o , ;en ’ ef : ’er 4 a ‘ we— ;I imcn :;Ional  version of ~ I -I F ’ i- ri c -  1 0 :- - ’

1: -n-p ’S I e~l i- ‘li e shock wave— h oun d ci”.’ la’-,-e r j t~t cram ’ ion I’i ’ ( 1 7 en- .

lie re cent roper: 000 c r ; ’- all work performed wider the suh ,~ec’ cod - r n -n
an I can lie l i t - i - I - - I  into two par ts.  lie f’i rst  per~ iet ;  concert : :  ‘-li e : - i - l U ;  ar
la s-er  api-roach; this r cpr i ’sents the major per ’~ion ef ’ ‘ - lie e f f or t .  let ; - in; or

lie :ub ,iect :nI;traco . P~; or ‘he l out ; Icr’s layer approach, a n ’e l l — i r i  -s -i:  we -ak
m l  -rac ’ci on -eni;  lar-,’ la’ser proci ’ - iu ,r - - was tno -ii fie-5 ~r allow ‘or s’ren- in ’ - r—
cc I i u ’t ;  soluc ions . L~ e nue-lificat ions inc lu -5  e (1 the incorp oratI c-i :  of an ctt or
:‘le;,- ai;ai~ss is , (ii~ the revision of’ t h e  ;dov- ’rn in d equations to  allow for flow
in separat eil ri-glens , and (iii) the revision of the  t-uri ’ulenc - model .  bie
urrIcilISti weak interaction solution procedure , tho mocl b f’ica’ions mai~ unilor
the current- - f ’fert - , arid sample calculations are descritie l it, the following
:- -;‘~cI u r i s .  ‘lie second port -t en  cif the ropert  c-ic-:;ceriis ~he 1110 i c r — f l ;  okes
approach. ie governing equations aol t h e  numerical me ’ h o l  o r -  I i :cu ;cse ,i  an-i
laifli-le calculations are presente,i .

_________
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I c e  - ~:j s  :‘e:- ‘ I ; -’ s ro- . ’ I , ‘--: - a- - So- - ‘ -‘ - i - u - -  S a c - - n  - -‘al ’l: a ir -o- i c - s e m i ; --
I -  ‘h ’ ’ : ’ - ’ i o u ’ ’ j . l a v- - l i — c c - o s - i ,  w- :tk 5 ’  - c n ’  S i - n  i - i a n : ’  de ,’e :’ 1-r i - - ’ - - h i r e  wh i l - ’l ;
hoc  l~~~u ; :- .i t o  ~ors~i;~ - s I c  ‘ - - 5’’ : ~; a vi  ; 01 ‘ - “ S ’ s - n , - ra ’ ; ’i ’  S o-u - n I
an . i  n c - I - g e : ; ’ i i - u ’; lar’; ia’s -n - ’ . .-\ so:- - - - - - ‘, - I  ‘ o i l e d  - - i ’ S :  t i o n of :h; ev - ’c’c-,--l u~- ’ =
as ‘ - : 1 1  ~~~

‘ a~. - ‘ x ;i : -ns iv e  C - - c  ; V i ’ I :o l .  be ~; i n - - i l _ c: , ions aol c a  - Ia;, be fc ’,in l I:;

R- ’ : ’ :1 . _ _ ’ 1- . 33, ~~+ and c . lb ;e rc ’c :’ Ic ’ l i l s c o : : i c - ’c I ’ l l - - I  i n - - H ’ S ’,’ ;es-s :-cl r ‘ I c e

L -.-:oa~; 1:; ’ erac I ion , ;‘ro-sedurc ’  arcI ‘ b c -I c  sno;- oc- d;: c ; -  - ‘ a l - Ice i c ’S ca ’ cons I’ - —

- - q’;c i’ - - I Her a ~~~ -: in ’ c-ra e ’ ii -’ -: coil - . S h o r e  Sio I i  Lb s’d ;o :~r i~;s- ci v- h’’ bo~’cn~
:0:-a ’ Ion  of an oU ’ ’l- f l o w  a:;11 , ; :i : ;  I n t o  ~h i - ‘ ‘ a i c u d a I i c ; . ,  ‘ . l’: 0 i l i ’ S ’ ~~i ion of

- - :‘sc :e-;,s in  ‘ I : ’  i’evo~’:el “ ow i- i - - i c - -  , ‘cml t l i ~ ~r I I ’ S  ‘a - i c : :  of  ‘ bc- c o - l u —
b ore  nc h - i  n- i : ! ;j - i  ‘he s-v-at -a ’ So ;  i~~l i - e. dl- ’x ’ , i i -  0 5 0 : ;  n :  ‘l i e  ‘-n ;:- - and

- “ n r a - ’ - - ;n : ; c c - :  of ’  he :o— :a 1 I b - i -a c - -id - . ’ :c - ] i u ’ So n s  c i ’ a i ’c - e t  -ci i ‘ li e :‘ :‘ -
-

I ! t e d ~~Ct .I c-I ; ocI~ is -1’,:: en ti - ’d .  11 c c ~~l idi I-,- of’ the branching s c - I  ;; I - a o:; -

vS t - l ;  Lic e clc-cc ’actci ’i s i - I c ;  of free 1 ~ t crac l S c-n : are b r - C~-: ented anl i- ice -cc:a v i 0;- of t ;;c ’
i n - n - - ’: - a : ’ l -~ 1’ - ‘:no’: o ’ - n i : ; ’ cc moi- :; ’i- cm an icc e i tc :c :Icrc -k n ’nvc’ are l-- r c i -;: ’ ma~ --

I - -: ;l icr ; is O C U d I O l  upon the low:;: nc -ar c bc-ul ; tary ‘on- i l  - i I : ri-c1 Ic - - n - .  TIce
n ’s- s~’ -‘a - cu; at 10:; arnroach l1:-.’ - i  10 solve I ,hi - 5 Iron, ’ I n t cr a c t T o n  m ac - len

- an c- - - . ‘ 1 ’ . ’ tow;:: ’ 1- -a:’ ii~~~ :; tar ’s condit i  011: 1 o be sa I: H i- - I ‘ .c-r ’s, ’h an I t - c a ’ iv ’
‘ sli er ’ i ;cg ’ c-: ’oc- ; .hir ’ . To I h i s  i’- enat  i s ’  p1-or-c- dun- ’ - ii S c ’ J U ( ’ l l I - ’ of i ; . i  - i -u - sn ‘i -  -

5 c-irs is zolve l unc 5 1 - l ie solutic:; at t h c  end of ‘die s t r e n d  icc ’ cc-a- ; ’ ’ I:::
I -’- i - a ’ ih ’S e w i t h  specified kwnstr eam bouu : ;-i am ’~’ s c : ;  l it ions . The m i  m l  v adue
T ’nci l ien : ’ c,-i ” h i l :  the r en i -oce . h i  ff ’i ’i’  i n  ‘Ice va lue of’ a fcn e sac’ , - - ‘ -c ’ . Di f f ’ ’re :c:
‘sri ‘ - ‘s of - he fi’c-o pararr m ‘n : - ‘ad to d iff e r e nt  b ranc l ;i : ;c  sodu’  l ec: a:; uI ’  I —

na’ -s1y to  Ii Hf ’- ’re:n f low fiel Sic at the  dow o:-’, rear : flow fi e .i :1 5 c u d ;  - cac ” , •

S - ’ o “ - l ie f-nc -c  5i ac’ome ’ i.’ li scus ;sec l  a:;-i t he  rat ic ’nal c- for us I cc r :cc
-.rc ;’ S o S  I i ’ ”c ’n ’ h e ’,~am am- - ’ ‘n wh- ” t h e  SOu l ’ 10:’ 1 5  ‘ac’ f’rr :-c :o:;i- - - c ’ -n ’ :c-c -. - a r - i
‘;:;o h- - r n c c - i - c b - I e  ‘‘or ‘h - ’ s a”--cre ‘1’ cc -h-’: l I ; ; so l l i~ i e : u  Is near sc ’:c ’scc-cc ’:;c - is

F lo a T ly , ‘1cc l’- ’:;U I t  a of ar c -lo in , ’ I h i -  “-c- f c u - i c  , i - ’y i -l i ’ . 1 ’ . ‘ I at-i n
ac-c- c -c -c - se ; ; 4 c-I . Do ’ h lam ina r a:; i ‘url ’u~l c n I  ~-e . :ul  ‘ s are ;-l’c:e:;t ccl a c:. ’ ;- :  ‘h

he i- - - i l i s  of f l i e  c-co i i  f led ‘ un ’bii I ‘ - ::-s e model I ha ’ was usc-I i n  tPc  success  fu i I
- l u l l - l i d  c’;I s ‘ nc- n. - lo t cc-ac ’ Ion cad c_ USI a ’ i o:;:

Teal ; T ; . t er ac t i oc ;  ‘ c c unlc t r,- Layer i’r cicedcu’e

‘I ’h- - - s - - a -  5 ; ; ’ rn ‘ Ii’;; so c; So:;, uc ’on wh i c h  t h e  cuii ’c ’ - ’ ; t  vend-: I . ; t -- ~~--~s u ,.1 -

been dew - - depo t ovcr a 1-en iocl of vea:’s and 1 c i i i : ;  c- f  I l ; ’ c’r c- ’ - .n ci ’ ’ a :’- c i - - - . ; :5 - - 1
o l i - f ’ s . 25. 33. :14 and • The procedur e it s e l f  solve s t h e  r I c a - v s I n ’ ~

-

i ’c-u ;n - i a r \ -  a-; -r - - ;a1 H’:;: 1_
el’ I an ;inc -uc ’ , trans 1:1 c-nrc 1, aol ‘ u ,rhui l ’:n HI ow • A:

:ll;en’ : by ‘ crc’,’ au ’ c c~s ( fcc- exam~’7 e , ;SIc hubauer and Tmh e~u ( R ef .  145 1), for ‘ vo—
dimen s  i con  I or ax S :‘.-rcd’ el n c  f lo w : , a ’ - -al ly i - c  the  i-c - ‘a:; , t h e  bo~ ’ - - in  l”i ’ nv ‘i-
a c — c - reic H—nc ’ ic ’: :’- to ‘he  sco rn - :; ’ c U; c , e;;crg’c’ , and ‘c:;l i n i l  I v  c ilia ’ 1011 hec ’uv-(’

— dP
Pu ‘
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‘ + V = - + a y (I
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In Eqs . (1) through (3)  x and y are coordinates in the strearrwise and ‘ran:-
verse di rec t ions , u and v are velocit1j components in the x and y directics, :,
p is densi~ y, P is pressure, C is specific heat , T° is total t ercperacur e, r
is she radius of curvature for an axis~ciimetric body, and the e~~ onent ~ is n’- nc
for lcwo—dimensional flows and unity for axisir’nme’ric flows . By deflni’i ce:, ‘he

‘:- f’f’ec ive shear stress , -r , and the effective heat transfer , Q are given as:

r ~~~ —s-!!- - p u ’ v ’ ( L)

Q :k If P C p v T ’

~ is viscosity, k is thermal conductivity, T Is static temperature.
In E-;:. (i) through (5) overbars indicate averaged quantities and primes in-
di cate  f”Suctuat ing  quantitIes . The equations are valid for laminar, transi-
c i ona l i , or turbulent flows ; obviously, for laminar flows the primed quant-i t i- ; :c
are :ero . In the case of turbulent and transitional boundary layers , jI  is
convenient to represent the contribution of the apparent turbulent stress , 

~1”
~o ‘h e total shear stress , T , by an effective turbulent viscosity, V 1. In an
analogous manner , the turbulent contribution to the total heat flux, q is-
represented by an effective turbulent conductivity, k~ , such that

- -

P~’T 
~~~~~~~ 

= - U V (~ )

of Ik T - p c~ v - r ’  ( ‘~‘l

ann Sc ’5 analogy to laminar flow -u. turbulent Prandtl nuniber , Pr
T , c_ an he def ined

P r T : 
~~ ~~ &i~~ ,i k ~~ (~d )

A4 t h i s  p o in ’ , i, :- a n - h  k - 1 c’IOT’lV r ,v -c- e :~~’115, ch f ’ in i  ‘ ions, and in no way J i is , it -  the

~i i l i s ~ tur n ’ ‘ci r l -ul - i c - i- - r c -  I - - l i ; ’. When Eqs .  ( 1 4)  1 h i r o u ~~b i (7)  are sul :’ ’ i t u t  oil in t o
E ~r- . ( 1 ) and (2 ) , I: - r- -:~: i I i : u - ’ 1 - i  - u : ch a t ” 4’ lay -i- r omeo ri-cc and -ti er ’S - - - ma c i c t i ; -

- -
~~; - -  ‘ h -  Hi-rn ;

7 
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PU Cp . + P V C p~~ .* ~~
(_

~~
_ +  ~~~~~

0 — a— (10)
+ -i—- ~~[ i -_ ) ~~~~~

÷ ( i -_ _  pi’ rJ ~~~~~~~~~~~~~~~~~

In JerIv in;-~ Lq. (10) use has been made of the definition of total temperature

T + (11)

In si tuations in which the flow is laminar , Eqs. (3 ) ,  (9) ,  and (i~~) are
solved with VT 

= 0 to determine the boundary layer development . When I - I c e  flow
is tranaiti c-’-c’ul or turbulent, it is necessary to model VT and PrT. The spec_ i-
ll -~a~ ioo of the turbulent viscosity, VT, and the turbulent Prandt’l numb er , Pr -:-
is carried out through the turbulence model described in detail subsequently .

In ‘-he present procedure the equations are solved by using the continuit y
e-lua ’ lao to eliminate the ex-plicit appearance of ~V from the momentum and enem y,’
equations . Then in the weak interaction case where the streamwise pressure
gradient , P(x) is specified , the momentum and energy equations , in conjuncti c-:c
wit-h an equation of state and equations governing VT 

and Pr
T
, form a closed se’.

of nonlinear, parabolic, partial differential equations which can be solved
upon specification of boundary conditions . Obviously, in the strong jot or-
action case where the streamwise pressure gradient, P(x) is not specified
a priori hut must emerge from the solution, an additional reli,ation is i’o cuii r I
to determine the static pressure distribution.

The wall and free-stream boundary conditions employed in the solution are
given by:

— — — o  ar
pv ( pv )w , u O~ ~ 1w or —

~~~~~
- 0 (12)

at : the f r ee - sIr - -am , y —~

Pu Pe ~e
(13)

~~ 
0 1-:

8
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The subscripts t w ’ and ‘e’ denote wall and free-stream conditions , respect i’:e15,.
The ini t ial  conditions for the problem are set by spec ifying the init ial  boundary
layer displacement thickness , 6~, and assuming the initial development is sim-
i lar  in “Ice dimensionless coordinate, ‘11 , where

y
( i14)

The numerical procedure used to solve the - sernlng momentum and energy
equal-ion : is a Hartree-Womersley approach in which streamwise derivatives are
replaced by f i n i t e  differences , the coordinate normal to the wall is nondim—
ensionali:ed , and a stream ftnction introduced. The resulting momentum equa ’ ic-c.
is a third order nonlinear ordinary differential equation in the transverse
coordi nate and the energy equation is a second order nonlinear ordinary differ-
ential equation in the same transverse coordinate . At each s t-rearnwise sta ’i o n
the nonlinear coefficients of each equation are estimated from the solution at-
the previous station and the resulting linearized equations solved as two-poirc i-
boundary value problems . Appendix A describes the solution procedure in cIe ’-a il .

The ftlly-deve loped turbulence model used in the weak interaction procedure
was or iginally present ed by McDonald and Camarata (Ref .  32) for two-dimensiona l
incompressible flow and has been extended to a variety of flow situations in
Refs. 25, 33, 314 and li-6. The model is based upon a solution of the turbulence
kinetic energy equation which is a conservation equation derived from the Davci cr-
Stokes equations by writing the instantaneous quantities as a sum of mean and
fluc tuating parts . The ith Navier-Stokes momentum conservation equation
( 1= 1,2 ,3, referring to the three coordinate directions ) is multiplied by the
i th component of fluctuation velocity and. the average of the resulting three
equations is taken. The three averaged equations are summed to obtain the
turbulence kinetic energy equation . The derivation of the turbulence kinet ic
energy equation has been given by Fav’re (Ref .  17) for compressible flow and
approximated by Bradshaw and Ferris (Ref .  8) to boundary layer flows. Two
turbulence models are used in the current strong interaction calculatci ons~ t h e
f i rs t  model is a modification of a Prandtl mixing length equilibrium turbulence
model. The second model is a modification of the turbulence kinetic enen-T-
model presented in Refs . 25, 33, 324 and 146. The modifications are discussed
subsequently.

Modifications For Strong Interaction

Matching and Marching Procedures

Although the weak interaction boundary layer procedur e described above
has rucr-r ::ftlly predicted the deveiopmeri l of a wide variety of boundary l ayers ,
it obviously requires as input a :~cee i i ’ 1e d  pressur e d i s t r ibu tion , P (x ) .  In
weak interac ti on flow:  I he pressure ~rn lii ’ol can h o  obta ined from an invinc ir l
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calculation which ignores all viscous displacement effects . h owever, in strong
interact:ion problems , such as the shock wave boundary layer in teract  ion , 1fl1’
inviscici  nressure distr ibution will be in s ignificant  error as the pl’ic -s ; ; r lc’ ic
d i s t ribu t i o n  and boundary layer development rnu ’cu al ly  affc- c ’ each 01- her .  The
prediction of the boundary layer development and the pressure di: 4 r i I u ’ i n : ;  u slo,-
a procedure which recognizes their mutual effec t s- upon ca - cl ; c - her is  t h e  - -e r --
of the basic strong interaction problem .

The present effort follows the strong interaction approaches of bef : . 1,14 .
21, 214 , 27 and 141 which introduce the additional condition ~l;a : the 1-cu t: tan’s
layer flow angle must agree wit- h the inviscid flow angle at Se::’: ;‘c oc i fir-I flow
loca t ion .  This condition gives rise to an additional equation w 1 i i - ’-h a d ew;; t h e
simultaneous prediction of the boundary layer development and I-be :‘ neac’:~’l, - - ’
stat-ic pressure distribution. From a s traight—forward a p p l l c a t i . t c  of t h e  -n o-

t -inuity equation , it can be shown that within the boundary lay-c- -i’ • ; i ~ t ’ Ii - w

angle , e, at a distance fl from the wall is given ‘by

tan e — ‘
~~e~~~ 

dPeUe ÷ a ‘ ( i n )

where 6* the displacement- thickness , 
~e 

the edge (wake) den:i’y, U th-- elce

(wake) velocity, c~ the wall angle , and x is the princ ipal f low direr ’ i o n . Us i ng
Eq. (15) the inner and outer flows can ‘be matched an~~ here between the w a I l  a n t

- ;  the boundary layer edge; however , by matching at the displacement’ surfac e
(T~ = 8*) ,  the second term on the right—hand side of Eq. ( 15) become s iden ’ ic a ~~J
zero and the resulting expression becomes

tan 8 = ~~~
‘

+ a (i6 )

As can be seen from Eq. (15), the choice of location at- which I-he flow:
are to be matched is somewhat arbitrary. Two locations which have been u sei l
commonly are the boundary layer ed, ’~e , 6 , ana the displacement surface, ~~~~~~.

For relatively thick boundary layers , ( - a i h e r choice represents a compromise.
If 6 matching is chosen , the entire viscou s- region is included below the
m at c h i n g  line ; however , the region below the mat chine l ine also include: a
region of transverse pressure gradient-: which are ignored in the boundary
layer calculation. When 8*_matching is used , the region below t h e  rna t ;chin 1-
l ine is expected to contain n c ’ g l a g i h i l e  transverse pressure gr a d i e n t s ;  c i ~,-a 
s ign i f i c a n t  viscous and rotational effect- s may he pros-en’ above the m a t r h i l n , - ’
l i n e .  In the  present effor t  6* _ matching was used.

10
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The boundary layer equat ions are solved by a fo rward nar-’-!cir ~ l 1-oco bin- :
in which the inner and outer flows are coupled at: each s ’ e:- . The p - r a c e -t n t ’ - -

is an i’ - -rative one which first approximates the displacement t h i r ko ’cs- :’- ( c m
edge  fJow angle from Eq. (16)) through an extrapolation of the selu ’l i - : , ‘i ’

previous stations . The boundary layer momentum equation t-hen is s a l - - c - b  ti -- ~ :; -

the specified displacement thickness to obtain both the boundary ‘lay -i- fl i w
ficld and the edge flow conditions . Thus , for an assumed fl ow n: ; ’ I - ’ , ‘ h i -

v i scous -  ca lcula t ion  predic ts  a cer tain edge veloci t y .  Usin~ an c-u t ~~ i n ~s i ,~~
flow relation and the boundary layer edg e velocity, this flow angle is n-ti r-
mined again and the two values of the flow angle are compared. If the two
flow angles agree within a tolerance , the outer and inner flows are considered
I o ,be matched.  If not , a new displacement thickness is assumed arc-b t h -  t r i o - -

lure repeated. The modifications in the equations which allow si- i - c i f i c a -  i ’ r ;
of ~~~~ for ‘he boundary layer solution are presented in App er i  l ix

• A f ~ en ‘ h o  rcorcen ’ um equation is matched w i t h  the outer f i ’ - w  law , I n -  - 

e-ius ’ ~i~n i s - s- a l - s- sd . The velocity, density, and t emperatur e f i e l d  - t i ”  U;- -c ;

e’snl ’c:~’ e - l .  The m a t c h i n g  procedure is repeated at each st r e ar ~~i:e s’ -r ‘ n i
t h us , a solut-ion is produced by marching in the streanwise direc ’ 1’

Uuter  Flow Anal ysis

As discussed above , the strong interaction procedure requires an :rSi : ’ -” i - - b
flow law which ~ives a unique relation between the flow angles and velcc i l; v.
In the present study, the well—known Prandtl—Meyer relationship for f l o w s
wi th  waves of one family was used to describe the outer flow . Under the
Prandtl-Meyer relationship, the flow angle , w , and the Mach number , M , are

• related by

w = 
_~1

/-
~
--;T t a n ’

~
’ I 

~~~~ — I )  — ~~n~~~
i;1:—

~

whe r~ y : I ho ratio of specific heats. At hypersonic Mach numbers the tanoent —

wedge relation can readily be substituted for the Prandtl—Meyer relation and ,
in fac t. , if desired , t-h e viscous procedure can he coupled to a s - u p e r s -n n i --
inviscid flow code to predict as much of the out-er flow field as desired .

Sepai ated Flow

2inc e the boundary ‘layer equat ions  are solved by a forward m a r ch i ng
proce-i1o’e , numerical  i n s - t - a h i i  l j t  l o s  are expect-ed i-fl  l ie  een c-rat -ed in I-lie reven: ;’-
f low r eg i o n  when ‘ h i ’ reverse v e l o c it i i s  are large or when the reverse f l o w
re ,~i en  \ v t  en d s  r- z-~r a large p i -r I  ion of” the f low . As show n by severa l au th o r s

• ~
- . i~ ,- - . 141 ) ,  t~~p ; ’,cs,~r~ o of ’ I h i , ;  I nstah i i y is in i -he  s~ rearr iw i c - ecinv ei -~

1 v”- ‘ - - t ~s ~ In t h-  present e f ’ f ’ n’i” , I h i -  i n s t a b i l i t y is suppress-ed h i y  the usual

11 
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method of approximating the convective terms in the reversed flow re ’ic- t . .  Is--
so tSar as the energy equation is concerned , the streamwise convective t n - r n
was simply neglected in regions of reversed flow . Since the present ~olut-ion
of the boundary layer equations is based upon a stream function formulat :10:1 ,

the suppression of the convective instabilities in the momentum equation may
not be obvious and , therefore , the suppression of this term in he r~ 
equation is now discussed in some detail.

In the present procedure a stream function formulation is useci in wb icI~
the stream function, F, is of the form:

o F Pu
• Pe U e (lt ~)

and the transverse velocity v is related i:~~~ t h e  str ears  funct ion  ‘ l:r -u ’c a~ - i - I U ’ :~—
tion of the continuity equation

Opu Opv ( ia )

which yields a relation of the form:

~v _ ’~°&~e (
~
;_ F ) + p .u 

~~~
-

- ‘ In Eqs. (i8) through (20) x and y are ‘he s ’ re a r M i se  and ~rans-v’r:’e coordina’ es- ,
u and v are the velocity components in the x and y -i i rect ions , ~ is ‘bc  d e n s i l y ,
and the subscript ‘ e ’ indicat es the  - r u : c n t i t y is- evalua t ed a ’ the edge of t , h i i ’

boundary layer . Af te r  a coordinate t rans-format ion of I -he fern ;

x~~x (,~l)

i s  made , the partial d i f f e r e n t i a l  e lu s t ions are reduced to ordinary d i l ’t ’ry-

ent ial  equations by approximating den y ’ i-se: in the streamwise direction by
two point backward differences; i.e., for the variable F,

OF ( x )
~~~ - 

F(x ,~~) - p ( x - ~~ x ,)~~
Ox ~~x (

~~
)

As r an Ii seen fr an .  the or i, I na 1 ‘o s-is-, c- f I c e  is -on-c -n t us ~,‘ n n -a ’ ic

Ou ~~ Or (~~
)

12
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and an t’xancc i nation of b-I-i ,. (20) derivatIve: of’ l , } ;i - Os-ri O;;. 5 ’ , :; ” i t , ,  F’, w ~ - :~

respect to th~s st ,r’eaniwtse coordinate x arise b oLl ,  L 1 r i -,i,,’ic s-t ie  - - c s - ,: ~~;

which c-~-ntro l s  streamwi :e ‘c irc v , -e t ion  and pvbu/~;’:. which -corns -relic - ,i ’~in :’:’-r,n
Cs-cove’ s- ~nn . W’ta -ii cont~r ibut i ons of both s-lie ’ , ,- term: to ~F/ ~x wer’ - ii - ’ ‘1 - -c ’ -

in re,’ionlcc of reversed flow , the solution t-es-’arnr’ u ,n st ,a l -le . bow - v - n . w I ; - - r c
only the cen t i~~ l b :n t ion  of Du~ u/ ~~ was r c i - - l ~ - c t - h  in the’- reversed flow so -Ic:. .
a stable so lu t i on  was ct-tam ed. In this l,att - - r case the f~ c” er ~F/~~-: wt ,Ich
arises from the s- -rn ov~u/~y is treated as a nonlinear coefficient whose
value was approximated by extrapolation of the stream funct I en from revS
s ta t ions . T h i s -  method of approximating the co n vect :ve t c-rs -cs- S r .  t Ic” s c-cs - -n t is-, -

and en-~ r ’I’v- equations rendered the c’-ys t.ern icct r-~i :cally stable i i ;  tJ I - s - c - S i t , ’-
of reversed flow. However, when calculatin - i:c i’t - cnlo r i t t - n - ccc - i ci r ’,- l ay e r s  vS
lan -c . high speed reversed flow re1ions i r is tab lities occurred . Fol l o w i r , -
Reyh rier and Flugc ’e—Lots (Ref. 141 ), rather than simply ne . ’ li -ct  irig these con; -
trihutions to the convective terms in the cs-,os-cerctcs -s- eq iati s-- ris . tb ”- a t -so los -
value of the appropriate coefficients were used to !rovicle added sta t -i lily .

Fur l t i  n i l e -  -

In l i e  early s ’ a e s -  of the present: work the  tuxbul ens-ce s-c-i -: : I used i~a;c
I- b~ n ca l  ‘ e ‘ ho ’ used in the weak m l  ~:-nar I i  en solu ’ ion ( s - - Appendix C)
I l I n c e  ‘h i s  t urbul ence model was deve l oped fc-r at tached flows , 1:he resujt leg
j- oe;’ agree:-: -n for separating flow: he : woon cal on I a t  ions and d’ita was no ’
uneccoec ’ o d .  The weak interaction turbulence model was b ase -b upon a n:ixin-
l eng th  is-odd in which the mixing lengt h was determined oi l her by an i - -s-u i—
l ibrium turbulence assumption or by the so lu t ion  of t h e  in ’ ‘ - s-~al  ~~~~~~~~~~~~~~
k in e t i c  ener~ ’s e-’lua i ion. This- urbcnl  ‘-n ec mode ,] was- we] — ‘~‘ c:i w:: ‘cc-I when u s - r u
in I he t iU’l -u  I ene s-c kine t i c  energ mode has h”-eo proven accurate fe-i- a 1-rea l
Sr -re t r”,,rcc of a ’ - cs -che -I  boundary layer fl ows (Ref ic . 25, ‘i~~. ari d i i ” )  . In
s- ” rc-ng in t i -ract : i c- n :cc- ’rai’at log - ‘lows , however , t-he l a s - i :  mails - - I level o~*--i for
a~ tachel s ’ S  i -w yl r i h l e d  poor agreement  wi t  h d a t  a even when used in the
turbulence energy mode and , in fact , calculations made with the original model
in the t urbulence energy mode showed little difference from calculations made
wi th  the original equilibriur - model. Thu s , both models appeared inadequate
in separated flows .

ftc  a rec’-o ’ at - - n  ( b ~ u” ” . 14 ~ C~~eo sic - -we-i I 1s-~~~ i n  ‘h e case of confined coaxial
s -

~~
- I ’  :‘ - ‘l:~ 

- ‘ - a ’ ii ii , ‘ hr  ‘ t i t ’ : ‘il enee 1o1 1 owed the di v i d i  s-ic c t  roam] in”- and appeared
+ c-  11  f ’f ’c,:e fri  r I I: i .s- : t’ -as I l o t  ‘h i ’ ’  t:-a i o f I ~~i’,~’ ne sr oss-od clowns -I I ’eam. L i t t l e  t urbu—
l’-ne ” wa,: ru i n- ]  i s .  - I ,- - - - - ‘s I f l e w  r e e l -  c c .  Base-I u s-en icon - c c -mpun ta t . i ona l ‘ u i - I - s i l e n c e

c u l l -: ‘s- nil i f 1 ~’ bt ’ ’i ofO,,’r’ - ,  a ‘c-i h i ~ ’ j - ’n~J i c n o f  l h - ” l a s - i c  ~u rr I-uli ’nco is - c- t e l  was I o s t u —
la ‘- I for t rs~ t c au’- , - a-s -n: ’ ec-~ t ainieg n- ”'’ I u’”u tat i s - c  f l o w .  The de ta il :  of I h i ~ :‘s- - I l —

t i e d  ‘ ‘ c n’l - : ; ! ’ - i uee  :c:c l e t  ‘i i” ’ n’ ,’, ’ - - : ; t e ]  i n  h i -  R e : c u l ’ s- crc ’ ‘ ion of t h i s  i’eper t a l en -
v i ’  h ’ ’ i - i cs- -or 1 :0- :  ‘ ‘- r- o~: ‘ - j u  :1: ’ I i ; : : ; h i s  : I I  ‘ 1 -  1 s - c o l e ]  ‘ n o b  I i-sc I -Itt ’ a .
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Soln ,n t ions - Of The Strong Interact ion Boundary Layer Equat ions

The strong interaction boundary layer procedure was formed h’r modifyi ng
the existing wea,k interaction boundary layer code in the manner described
previously . However , the application of the forward marching strong inter-
action procedure to compression corner or incident shock problems requires
an iterative method of solution based upon the branching solutions obtained
when the interaction is treat ed as a forward marching problem . Therefore ,
the present section discusses characteri stics of the family of branching
solutions that can emerge in strong interaction computations. A,s will be
dis cussed in detail subsequently, the forward marching procedur e can be
posed so that the problem contains a free paramet er . Different choices of
the free paramet er lead to different branching solutions and the i terat ive
solution consists of det ermining what value of the free parameter is
required to satisfy specifi ed down stream boundary conditions. fince proper
choice of the free parameter produces the desired comput ational solution ,
characteristics of the selection and iterative updating of the free parameter
also are discussed .

Characteris t ics  of the Branches

The nature of the solution to the strong int eraction boundary layer
equations has been the subject of a series of investigations (Ref s .  5, 19, 2 ” .
24 , 27 and 14i). In brief these investigations have shown that the strong
int eraction boundary layer equations can be satisfied by a family of solutions
( see Fig . 1) consisting of the classical weak interaction solution (termed
the fundamental solution) and in addition , a family of h-ranching or dei arture
solutions (termed free interaction solutions). From a numerical point of
view Tyson (Ref .  53) has shown that these branching solutions can emerge in ;
solving f in i te  difference equations when the streamwins e step s ize  is chosen
to be less than a characteristic departure length ; for large streamw,ise step
sizes only the fundamental weak interaction solution emerges. The v a l i d i t y
of these branches as eigensolutions of the laminar boundary layer equations
was demonstrated by Hankey, Dwoyer , and Werle (Ref.  20) and the role of the
initial conditions in determining which br an ch of the family of solutions
emerges was investicated by Werle, Dwoyer , and Hankey (‘c le f .  514- ) .  lioth Refs .
20 and 514 demonstrate that a single free parameter exists in the i n i t i a l
cond it ions  to the solution of the laminar strong interact ion boundary layer
eq uations that controls which of the many physically possible branching
solu tions wil l  emerge. By controlling the free parameter one can select- the
branch to emerge from the solution . More recently Bertke , Werle , and Polak
(Ref .  5 ) have demonstrated that the strong interaction t urbulent boundary

~,ayer equations contain branching characteristics analogous to the laminar
c i ranches described above.
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- ‘it ;  obvious problem which a r ises-  when the int eract i on flow fi ’d t is
solved vi ’s- a forward marching procedur e is the  specifi cation of +~~e down-
:‘t ream boundary con d it  ‘on. At t h e  upst r a m  boundary of the calculation
region , t h e  bourc-Ia rv layer vu ’loe ltv  arc - - r ~c ’ [ty I i s -t r i~’u~ i c ins - , ore spec if i  u ’-t .

- l1u ~ s o, ’ r- - ’s-:: ;’, ’ - L ’ ii~r i hi - se rree:  - - c u , str ,— - s i -n  i t - i c - c :  scus t Pu - c - a s - n - i  ui- en
ice t ’r -s-sur~’ (o r ‘s- i s- i ccum: - -i’) li -i ni g e e n i s i st i -r , t -  w i t h  ‘ lie i n c c i - P - n c  shies -k

ru -:i~~ hi c-r eompru -c’s-ien: corne r ‘ta lc. in he -  t- r -  -sc~- n i t  ec ’t’er’ the -:oa.i I t ion
s-lies -crc i s  t ha ’ t he axial ru ’s, cur i - r a t  i~ n c~. be s -re when ‘,- he-  s - t a  ‘s- is- pr - - o ur - -

is - .~ua1 : o t P - inv is  s-id io~o n c  i n  cut value .

- ‘i nc~- the  strong int eract-ions- boundary layer equations ore  solved by a
forward marching t echniqu e , an i terative solution procedure is employed t.o
couple t h e  downstream boundary conditions into the solution . i-irst , values-
s-f the  boundary layer properties as  well -is the free parameter control ling
the  branching or -s set at the  ups-t r am boundary of the flow fi eld . The
bound -cry layer equations coupled to an out-cr flow law or e  then  int egr’-d c-I
dow’nst-rs-’am by the  implicit f i n i t e  difference procedure outlined previously
and the pressure distribution generated by the solution in-c monit-orc’l . If
t h ~ ax ia l  pressur e gradient is-  zero at. the stat- ion where th e  st a t i c  press’s-re
ii- t h a t  given by inviscid con s ide r a t io n s  downstream of the  s--hock , t h u - n  t h e
problem is  solve-I ;  if not , the free parameter at - t he  i n i t i a l  cd at i en is
ch -an gi’t a n ]  t h e  hour~ tory  layer equat i ons in tegra ted  aga in .  T b ”  ‘it i ’s-a t is- : :  on
I hi - - t ree paramet er at t h e  i n i ti a l  value plane is  continued u n t i l  t he  down-
;‘t ?~u ltSi boundary conilit -ions a re  met to the de s ired  tolerance.  Thi s procedure
is  simply a vari enct .  of the  well known shooting techni que for two-point
t’ o-st ; 1-Ir y v-clue problems.

‘ c c ; c .

The boundary layer calculations wi ’ru ’ star t eil using the  weak int eraction
boundary layer  procedure t.o predict the  development of a boundary layer under
‘in imposed cons tan t  n—I at -ic pressure - l i s -t - r ibu t ion . A f t  or mar ching several

s-I u -p s  t .o ; ‘e t - t l u - out t he  effect- of intial  condi t ions , the weak lOt u ’roct ion
calculation was replaced by a strong interaction calculation . At the ~- s - i n t
of swi tching to t h e  c-t n ’cnng in teract ion calculat ion the  so lu t ion  branch w i , -
s - I- -ct ‘-i by imposing a pressure gr o - l i en t  at the  lost weak i : ct’  u -i ’act i ois c-I at is-in .
in g -r ;er al , he st ronger t ,he adverse p re ssu re  gradient  imp - s - e l , the  sooner
t h e  com p r o - s i v u - b r anch  emerged . The more favorable the  i mposed gradi ent- , t h e
l a t e r the  i- ’ s -mpr u - ’ ; ’ ive  branch em- ”rgu ”i I .  lIven more favorable i mposed pr ’s-c-un’--

c~’r’1 I i  ‘i ;t s- pro l i C u ” expansive branches. cjnc e the branching behavi or is-
let ertln n e -I  by the- .~~’I a i l s  of the boundary layer prof i les-  ‘it the ci ar ~ of i t , - -
in f - -r ’ ac~ j c u i ;  (R ’ -~’ . 5111, it was not possible to ~le ternnine  in adv anc e  t h e  imp s -c ’ - - . ]
pn’r: - ’ 1n r ~’ cs- r N i i  cot t ha t ,  woul I produce a given bi ’ ’c i cc h . In gene ra l  , a s- -ri u ’s- s-if

:5 n - - were ma -I c  for •“qc h ca se  to  cipt - ermine empi ri cal l  y th e  -le t a i i i -  s-I’ t ic-
r ’ ’i ‘ì~ I s-n P u~~t wre n t h e  I sip s- s- i’d pr c ’c’ sure er-c - I i  ent. ‘cii i I i ’  c’mu -re I iug br anch  r ol u n t  ion

_ _  _ _ _ _
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The free parameter that was used to impose the pressur e gradient at
the start of the strong interaction was a pert urbation in the edge velocity
t ermed a °kick ” . Obviously, the perturbation in edg e velocity imposed a
specified pressure gradient upon the boundary layer at the last weak int er-
action station . Although an imposed pressure gradient was used as the “free
parameter ” in the present study, thi s was only on e of several possible
methods which could be used to generat e the required series of branching
solut ions. In the process of it erating on a solution , small changes in
the kick at th e start of the interaction are required to produce changes
in the flow field at the down stream boundary . However , in th e process of
integrating the strong interaction boundary layer equations downstream,
small changes in the initial flow field becom e smothered by truncation
error from the linearizations and from the classical problem of significant
figures. One solution to thi s problem has been to go to double precision
on the computer and thereby gain additional significant f igurer in the
calculation .

Another method for controlling the branches was found t hat obviated
the need for double precision . This method consist s of dividing the
interaction procedure int o two part s , each using a different but conceptually
equivalent free param et er . First the kick is used as the free parameter
that determines the location of the start of the free interaction relative
to the location of the incident shock or compression corner . The iteration
on the kick , described above, is used until the limit in significant figures
was approached. The kick is then frozen at the latest value. The second
part of the iteration uses the di stance between the start of the free
interaction and the location of the incident shock or compression corner
as the free parameter . Leaving the upstream solution unchanged , the location
of the shock or corner is moved up or down stream until the downstream flow
field is compatible with the down stream boundary conditions. The chang e in
free parameter used to control the iteration has removed the need for double
preci sion in the cases that were 1nvestigated.

Results

The strong interaction boundary layer was comput ed by iteratively
selecting compressive branches of the boundary layer equation s unt il compat-
ibility with the down stream boundary condition s was obtained . Thi s section -

present s the result s of applying thi s strong interaction boundary layer
calculation rrocedure to a series of laminar and turbulent compression corner
flows. The laminar runs are presented to verify the procedure used since
th e laminar calculations are not complicated by turbulence modeling . Both
the validity of the numerics and the control of the branching solutions are
presented . When turbulent strong interaction calculations were performed ,
the qualitative behavior of the solutions was foun d to be the same as in Lic e

/
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laminar case , however originally the quantitative agreement with experimental
dat a was found to be poor . The source of the problem in the case of turbulent
flows was found to be the turbulence model . Therefore , based upon some recent
experimental data of Owen (Ref. 140 ) a revised turbulence model was postulated.
Turbulent solutions with bot h the original and the revised model are presented
subsequently.

Laminar Flow

Other investigators have achieved apparently accurat e predictions of
laminar interacting boundary layer s using physical assumption s similar to
those used in the present effort . These available solutions can be used to
confirm the correct operat ion of the UTRC Code . Furthermore , the laminar
case provides a direct confirmation of the numerics since it is not complicated
by the turbulence modeling required for turbulent boundary layer calculations.

In separating boundary layers , experimental dat a (Ref s. 11, 13, 16 and 149)
indicates that when separat ion in supersonic flow result s from an incident
shock or a compression corn er , the shape of the initial pressure rise and
the associated changes in the boundary layer profile are independent of the
specific cause of the compression , a phenomenon t ermed free interaction.
~lxpe rimental data also show s that the di stance between the start of the
pressure rise and the incident shock or compression corner increases as the
strength of the imposed compression increases . Thus for given conditions ,
free int eraction pressure distributions form a f ami ly of identical initial
pressure rise contours (Fig. 2) whose location relative to the location of
the incident shock or compression corner is det ermined by the strengt h of
the overall compression . Two free interaction pressure distributions are
parallel to each other only being separated by a con stant di splacement in
the streamwise direction. It should be noted that both laminar and turbulent
boundary layers have been found experimentally to exhibit thi s free inter-
action property. In the case of laminar flow the various pressure rise
curves reach a common plateau at a pressure level t ermed the “plat eau pressure”
(see Fig. 2) which occurs at a streamwise location upstream of the incident
shock or compression corner .

In the present effort in which strong interacting boundary layers ere
computed by a forward marching procedur e , departure solutions emerge and , as
described in the previous section , these computational branching solutions are
bona fide solutic-,ns of the boundary layer equations. The behavior of these
computational bran ching solutions was found to correspond in a qualitative
manner to the experimentally observed free interactions for both laminar and
turbulent separating boundary layers. For given flow properties different
departure solution s give pressure rises which initially are parallel and only
--tiff er in the location of the pressure rise. The comput ed laminar branchi ng

18 
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solutions obtained in the present study were compared to the free
interacting plateau pressur e correlation of -7’urle (Ref .  114) and the pressure
rise to separation correlation of Chapman , et al (Ref. l l )in  Fig . 3. The
comparison s of the calculations with the dat a correlations show the
prediction s of the  present procedure to be in good agreem ent ~-~, l h  both the
separation pressure and the pleateau pressure correlations.

Two calculations corresponding to two different upctream condition s
are shown trc F i g .  3. tn bot h calculations the interact ing solution s are
star t ed by f i r s t  marching the code for several streamwise st ation s under
a specified free-stream velocity distribution, i . e .,  an imposed pressure
di--t r ibut ion . A velocity perturbation, the “kick ” , iE’  then added to the
imposed edg e velocity to t r igger  the branching solutions. At stations down-
stream of the kick , the ed ge velocity is determined from the strong-
interact ion cal culation . Different  k i ck s lead to different profiles at
the  la st. station prior to the in te rac t ion  and thus lead to d i f fe ren t
solution branches.  The desired branch can be selected by i ter a t iv e l l; changing
the ‘ kick ” . Thi s control of the branches , along with the abili t y to calculate
reattachment was confirmed by running a series of sample calculations at
M = 14 • The branch control obtained via an upstream kick is  present ed in
Fi g.  14 .

When the c o n dit i o n s  at the s-tar t .  of the interact ion are var~ ed in
an a t tempt  to match downstream boundary condi t ions , small chan -es- in tics-

kick are required. Because of the tolerances used in the iteration and the
truncation inherent in the solution, the effect of small changes in the “kick ” ,
smaller than the changes shown in Fig. 14 , can become numerically insignificant
by the time the calculation marches past the corner . Tighter tolerances and
double preci sion could be used to alleviate this problem , however either of
these would have an associated increase in computer run times . Therefore, a
second method of branch control was investigated in order to control the
reattachment and downstream branching . The second method of control was--
obtained by displacing the compression corner small distances up or down-
stream relative to the s tart  of the interact- i s-n. C s - n i t - r u of t h e  re ’at-t - achu :ce n i t
and downstream t r anc ch i .nc ~ solutions was succes-s-full.y obtained i-y t h i s  means as
sho~~i in Fig.  5. In prac t ice  a combination of Pot -lu cs-ct -Pod s of branch c o i ct r i
is employed. The “k i  cl - ’, in ed i ’e veloci t ,~ at the s tar t  of the interact -  ion i s
used to control the branching unt 1 1 the downstream so l u t i o n  (-ceane I cis - ccc  I —

tive to small ch an ui ’u s  in the ‘k I -s-k ’ . Fi nal n -es ol ,c t - i on s-I’ t h i s -  down -is tia  am
boundary condi t ion i s  accomplished by small h icc p l ac e nsen i  cc of t ine location of
the compression corner.  Applying this two s-t ,a -e method of l - ran cc ic  c s -n i t - c ’ s - i .

a laminar st .ren~- In teract ion calculat ion was- made to ~omIu are to the dat a of
LewIs-, hub s-ta . ao l  Lees (Fi~~. c~) . Aft -er a s-ui table k ick  was i mi -s- iced , var I ous

- s-a u s - i c c - s o lu t ions  were cs-Pta I ned by cs -r i i~ ~ tii sn -i a’en ccenl t- . As -xi-ec Pc-I • two
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families of solutions emerged: one giving continually increas ing pressure
and one giving a pressure maximum followed by a pressure decrease. Since
this study is primarily concerned with strong interacting turbulent boundary
layers , the pressure overshoot that occurs in laminar boundary layers after
reattacbinent (Ref. 28) is not addressed in this report. The corner location
was iterated upon to move the branching location between the two families
further and further downstream. The results of the calculation are presented
in Fig. 6 which shows good agreement with data over most of the interesting
range.

Turbulent Flow

After the procedure was confirmed through the laminar calculations
presented in Figs. 3-6 the procedure was applied -to strong interacting
turbulent boundary layers. The results appeared to be qualitatively reasonable,
however , the free interaction pressure rise was more abrupt and led to
higher plateau pressure than was indicated by data as shown in Fig. 7.
Similar results were obtained by Bertke, Werle, and Pol&~ (Ref. 5 ) using
a different turbulence model. In the present code the computed turbulence
structure is based upon a mixing length model in which the mixing length
can be determined by either an equilibrium turbuleoce assumption (equilibrium
model) of by the solution of the integral turbulence kinetic energy equation
(TKE model). Under either the equilibrium or TKE option, the turbulence
structure is based upon an assumed one-parameter mixing length profile which
varies with distance from the wall as a h~~erbolie tangent function. In
the immediate vicinity of the wall the mixing length is damped by a prob-
ability damping function. The free parameter in the profile is the “wake”
value of the mixing length; i.e., the value far removed from the wall. When
the equilibrium turbulence option is used, this wake value is a function of
the boundary layer thickness and the local momentum thickness Reynolds number .
When the turbulence kinetic energy option is used, the “wake” value of the
mixing length emerges from the solution of the integral turbulence kinetic
energy equation.

A turbulent free interaction was comput ed first with the equilibrium
model and then with the TKE model. As shown in Fig. 8, the calculated wall
pressure and skin friction distributions were found to be virtually identical
even though the wake mixing length distributions of the two methods differed
considerably (see Fig. 9). The low Reynolds number correction factor
(Appendix C) is used in both cases. In an attempt to gain some insight into
the sensitivity of the wall pressure distribution to the turbulence modeling
assumptions a series of frozen turbulence models were evaluated. First, the
eddy velocity was frozen at the value at the start of the interaction and
held constant along lines of constant distance from the wall (y const).
Second, the turbulence intensity (Reynolds shear stress -u ’v ’) was frozen
at the start of the interaction and again held constant along y = cons-t .
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Third, the eddy viscosity was frozen and held constant along streamlines,
and fourth , the turbulence intensity was frozen and held constant along
streamlines.

The results presented in Fig. 10 d~~ionstrate that the wall pressure
distributions could be drastically altered by the turbulence modeling
assumptions; However, as shown in Figs. 9 and 10 the wall pressure distri-
butions produced by the original T1~ and equilibrium models were very similar
yet the wake mixing length distributions produced by these assumptions were
considerably different . To resolve this apparent contradiction an inves-
tigation was made into the details of the turbulence structure produced by
the T1~ and equilibrium models. The mixing length distributions within the
boundary layer produced by the TKE and equilibrium models were compared ‘~~~

‘

shown in Fig. 11 at three streamwise locations. Although the TKE and
equilibrium models produce significantly different values of the wake mixing
length, Fig. 11 shows that the turbulence modeling near the wall remain~’
unaffected by the changes in the wake turbulence. Thus the problem with the
turbulence modeling may not be one of predicting the wake properties but may
be one of predicting the distribution of’ turbulence near the wall, especially
in the recirculating region.

In a recent paper (Ref. 1i~O) Owen showed that in the case of confined
coaxial jet s with recirculation, the turbulence followed the dividing stream-
line separating the recirculating flow from the outer flow (in a time averaged
sense) and appeared to diffuse from this streamline toward the wall as the
main flow progressed downstream . Little turbulence was found in the reversed
flow region. Based upon the results of the turbulence studies presented in
Figs. 9-il and upon the data of Owen, a modification of the ba~’-ic turbulence
model in the near wall region has been postulated for boundary layers containing
recirculating flow. This modification employs the observation that In  attached
boundary layers the wall Is a continuous streamline of the flow . In separ1~t-ed
boundary layers, the dividing streamline is the limiting streamline of the
main flow region, and the turbulence approaching the recirculatlon region is
convected around the bubble by the mean flow . Therefore, the damping of the
turbulence from the wall in the original turbulence model is replaced by
damping of the turbulence from the dividing streamline when a recirculation ii’.
present . Since Owen ’s data implies a clight spreading of the turbulence into
the recirculating region, a diffusion of the turbulence from the dividing
streamline into the recirculating flow region is included In the modified
model. This diffusion is postulated to spread the turbulence at a 14° half angle
into the forward flow portion of the recirculating region . Damping by the wall
is expected to have a strong effect in the relatively low speed reverned flow,
and since Owen found little turbulence in this region the turbulence it’- as~’-umed
to be completely damped in the reversed flow. In attached boundary layerr , the
mod i fi e-1 t urbulence model collapses into the origin-il model . Mikulla ani
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Horstman (Ref. 36) have recently published dat a that includes turbulence
measurements for a shock wave—boundary layer interaction. Although the
measurement s taken only roughly define the turbulence field, the data is
in qualitative agreement with the conclusion drawn from the data of Ref. 40.

The turbulent free interaction calculation of Fig. 7 was recalculated
using the modified turbulence model. A comparison of the wall pressure
distributions calculated using the original and the modified turbulence
model is presented in Fig . 12, where the wak e mixing length has been set
in both cases by the Prandtl mixing length equilibrium turbulence model.
As shown in Fig. 12 the modified turbulence model corrects the overly abrupt
initial pressure rise and reduces the plateau pressure, and therefore, the
modified model leads to better agreement with experimental data. A comparison
of the turbulence distributions for the original and modified turbulence
models is presented in Figs. 13-16. It can be seen from Figs. 13-16 that
the modific-itions in the turbulence models affect the wall region and in
the case of the TKE model can also affect the wake region .

The calculations of the strong interaction boundary layer procedure
with the modified turbulence model are compared to the compression corner
d-ita of Spaid and Frichett (Ref. 51) in Figs. 17-19. Three cases at an
upstream Mach number of 2.93 were investigated for ramp angles of 9.810,
16.06° and 19.67°. The separation bubble length varies in these cases from
very small, less than a third of the upstream boundary layer thickness, to
very large, over 2 1/2 times the upstream boundary layer thickness. Figures
17-19 show in all three cases that t 1~~ calculated overall pressure distribution 

- 
-

is in good agreement with the data.
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TIU~ P~VIER.- 0T0FZES APPROACH

The second phase of the present effort is a feasibility study in which
the Multi-dimensional Implicit Nonlinear Time-dependent (MINT) procedure of

~‘iley and McDonald (Ref. 9) is applied to the interaction flow field. Until
fairly recently it would have been impractical to consider a Navier-Stokes
solution to this problem, however , rapid advances both in numerical analysis
and computer technology now make the Navier-Stokes procedure a possible alter-
native to the extended boundary layer procedures for shock wave-boundary layer
interaction predictions . Solutions based upon a Navier-Stokes procedure have
several advantages over those based upon boundary layer analyses. First of
all, solutions based upon the Nav-ier-Stokes equations need not make an arbi-
trary division between viscous and inviscid portions of the interaction flow
field. In addition , Navier-Stokes procedures solve a f’ull transverse momentum
equation and need not make any approximation to the convection terms in sepa-
rated flow regions. These considerations indicate that even if a Navier-Stokes
interaction procedure would require more computer resources (storag e and run
time) than a boundary layer interaction procedure, its potentially increased
accuracy may make it an attractive alternative.

In the past few years several investigators have applied Navier-Stokes
procedures to the interaction problem (e.g., Ref s. 2, 29, 30, 147 and 1+8). With
the exception of MacCormack (Ref. 30), all those solutions have been based upon
explicit finite difference procedures. In Ref. 30, MacCormack used a hybrid
procedure in which convective terms were treated explicitly and viscous terms
treated implicitly. One major difficulty which seems to emerge in varying
degrees of severity in Navier-Stokes interaction solutions is the accurate
treatment of the shock wave. Over the past years a considerable effort has
been expended in developing explicit procedures which can solve the flow
equations in the presence of flow discontinui.ties (shocks). The explicit
finite difference interaction procedures mentioned above are based upon such
a procedure originally suggested by the weak solution concepts of Lax and
developed to a fine point by MacCormack; this procedure is described in detail
in Ref. 29. In a separate development Moretti (Ref. 37) treated shock waves as
spatial discontinuities with explicit recognition of their presence. However ,
at the present time this technique cannot be used in viscous regions where the
shock can be physically diffracted by the shear layer. To date, no similar
lart’e scale shock treatment effort has been Un Irrt-aken usint ’ implicit  methods .

Tn a st u dy  of’ invisci-I tran~ eri ie  flow r-furman and c’ol- (Ret ’. 38) s~~1ve d t h e

transonic p *-r t ;urbat ion equations ‘jeirig an impl ic it . l i nt ’  r~iaxation ~-r~ --’- lure .

The ~urrn~ n_ ~ ole technique succeo le 3 in capt -urint ’ shocks in supercritical 1’low

as part CI’ a continuous ~olutiox , ewi ng largely to ~h - numerical  v i seoni l
introduced by t h- d i H I - r -nce scheme. In ‘ l’it’-r work Murman ( Re t ’. 39) u:~e a

~~- - ‘c~ al di f’~ - rence  operat (r at, the ~nnic line (the chock pe int  ep - r a t -  r an - I

‘1 
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acain ca;~t s r - :  t i n -  ~t iec~ as part of a continuous solution. Ihe shock
renr -: --r it a’ ion in this latter work was considerably sharper han in tht- ~-~ur~~ n
an I ~ole work. k t t i  procedures are discussed in some -Ictail by Haf -z an-:

~hetIG (B . 19). In addition , Beam and Warming ( R e f .  1+) have used the briley-

~-~cPoiial -l numerical procedure to investit’ate the flow field about a shock in
which t b -  flow passes from a supersonic to a subsonic state. Therefore,
alt. heu~=h some e f fo rt  has been expended upon shock representation within
implicit schemes , the • -ffort, has concentrate l prislarily upon (i) flows which
are invisci l and (ii) shocks through which the flow goes from a sup -r sc-n~ - : te
a cubsorri c state. tc-ither of the above requirements is satisfied in the 50(0k
wave-boundary layer interaction problem where the flow is viscous and tin- check
is usually not strong enough to cause subsonic flow on its (fownstr ean ci~~e.
.~ ie Navier-Stokes portion of the present effort reirt-sents a simple feasibili ty
study in which a fully implicit procedure is applied to the shock wave-ceun-iary
layer interaction problem. The study assesses an application of the ~-1l ~-~ co b- ,
in its present form , to the interaction problem , ~ives an cc simat e of computer
run times and indicates areas in which further development work would be
required to obtain a reliable and accurate pred ic t ion  procedure .

he Pas is Analysis

ihe Governing Equations

‘I he equations solved in the procedure represent conservation equations of
mass , momentum and energy (Ref. n ’l • For si’n’nlicity the equations are expressed
in vector notation below and all quantities are nondimensional. Velocities are
normalized by UD, density by 

~D
’ enthalpy by h~ , temperature by Up. pressure by

PDRgTD where R~ is the san constant , dynamiC viscosity by ~~~~~ anc time by
(L/1JD’~ 

where L is t~ie reference lerit’th, nel y forces ant bulk viscosity are all
assumed to be negligible. ~n’- recultint’ t ime~averaged equations are 5I V I  n by

- ~Ofl t j f lUj t\r

- V ‘ (pa) ( ‘ 14 )

Conservation ot ’ Moment ~

Ô(P~Y) _ v . ( p~
a)_

~~
.
~ - 

~P + ’~
_ V

~ (2iU.ef f ~~) 
— 

* ~~~~~~~~~~ {~ eit ~~~~~~~~~~~~~~ ( : 5 ~

f o r  iSe rvat iOn ( f

/‘H)~~~ _ çy (p~H)+ ~0 ~2_ + — ~Lv . ( rv ~)
ô t  P0 h 0 ô t Re h ( , 4~~~)

+ 
_Li~2~ V.  { Q~eff ~~~

’
h) ~( D~~) }

— - - -~~— - ,--~~ ~~ ~~ 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The mean flow rate of’ strain tensor in Eq. (25) is given by

~~: 4-. { (V O +~~~WT] (27)

~he necessar therms- lynamic relationships are

p : p T (28)

2 0H: h+ ..L !~L. (‘U-~ )
2 hD

and for constant specifi c heat the enthalpy is

h C~~T (30 )

In order to solve the above system of’ equations it .  is necessary to specify
the turbulent exchange coefficients 

~~ff 
and 1”h• In ‘he present analysis since

the effective ~‘andtl number is defined f’rom knowledge of turbulent flown of
gases, only the turbulent momentum exchange coefficient , 

~eff’ 
must be speci-

fied . The energy exchange coefficient is obtained from the relation

~ e f f  ( - ‘1)
Pre ft

and the effect ive viscosity is obtained from a turbulence model,

The rft~ buleflce Model

In the case of laminar flow the governing equations . Eqs .  (21+) - (~~e ) ,

along with the relations expressed by Eqs. (“ 7 )  - (31) are suff icient  to l et er -
mine a solution when proper boundary conditions are app1i~ - I . Bowi-ver , in t ur-
bulent flow it is necessary to hypothesize a turbulence model relating the
turbulent viscosity to the other problem variables. bv er the past years m’iny
such models have been hypothesice-~I. These include equilibrium models relating
a mixing length or ‘ Idy viscosity t” local variables , and h i st or i c a l  models in
which th e  local turbulent stress is determined through an additional equation
(or equations ) rela t,in the stress to the ups tream histo ry 01’ the flow . A —

mo- -~l et ’ the lat ter type in whi ch  a m i x i n g  l en g t h  is hy~~ t h ’-ci :- - -is in which
the magr’i 4 u l e  n h’  the m i x i  ii ‘I - -nc h i s  determined by the t ,ur:’ulonce ki n’t ,l c

‘n ’r -: - - -qu a ’ len is iscucs - -i in t t - e  boundary la -cr section -f ’ t h is  r - p -r l .

43 
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Since the present Navier-Stokes effort represents an initial feasibility
study , a relatively simple turbulence model based upon a mixing length was
used. This model is similar to the two-region eddy-viscosity model utilized
by Shang and Hankey (Ref .  148), in which the mixing length in the inner region
is given by the equilibrium model discussed in Section II, i.e., the turbulent
viscosity is

l.L y
1 

p L 2 V’~2 : e  (32 )

with the mixing length, ‘ , given by

A_~~ 22~ ta nh~~~i .\  ~~Sb Sb

where 8b ~s the local boundary layer thickness, K is the von Karrnan constant ,
y is the distance from the wall, and .2~ is a sublayer damping factor defined
by

2�r~ ~~~(Y _ r ) J /2 
( 3 )

where P is the normal probability function, and

~~~~~~~~~ 
j T \ I / 2  P

- 

~p /  #~

Here r is the local shear stress , y4 = 23 and o~ = 8.

-or two-dimensional equilibrium turbulent boundary layers (t ~/o b ) has a
value of approximately 0.1, which was employed in the calculations reported
herein. In addition , because of the difficulty of’ -lefining the boundary lay- -i
edge in an interacting flow field , 6b was taken as the boundary layer thickn - ’ss-
upstream eG’ the interaction region.

The outer region o hly viscosity is giv en by the Slairser - I c  fe ’t , law, i.e.,

O.O~68 PU max ~~~ ~
‘
k

1 4 ) 4 

-. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 



where ô*jnc is the kinematic displacement thickness

(I- u~~0~~)~~
y (36 )

and Vk 
is the Kiebanoff interinittency which may be appronimated by

= I ’ + 5 5  ( Y ) G1~~

In Eqs . (35) - (36),  ~~~~~ has been employed instead of’ the edge velocity to
avoid possible anomalous behavior of the transient solution (Ref. 1+8).

Artificial Damping

The treatment of shock waves in a Navier-Stokes calculation procedure
with finite differences requires the use of artificial diffusion in order to
prevent numerical oscillation which may cause solution uivergence. In the
present implicit procedure a modified form of the fourth-order pressure damp-
i n ;  term suggested by MacCormack and Baldwin (Ref. 9) has been employed,
viz., a term of the form,

Dp k ~ k

has been added to each of the governing equations i c i n g  solve I for each

~o o r I i r a t ( ’  direction Xk . The diffusion coefficient  T
~k in E q. (38) was t aker.

as

‘lk =~~(Ax k ) f -  ( - ‘ )

wh -re 0 ~
‘ B � , c is t b -  local s -un I speed , an- h t h e  a—;~ ra -  rt -ssui-

giV en l~~~~

4~
_. 

(P _ 1 + 2 P 1 + P .1)

-w-tt- ’re i is the sri p— i n t  in l x  it  I h u -  Xk
_ ii r . - c t - ~ c -r . .  In  the i a m p i : . - ‘ i’m t b -

“a c - or ~
‘ is s-  - ‘ , to  l.t’ h ’  -r - i i  c - n ’ 1’ ci ,- , - r u a t ,:i on an r t o  p for all el her

:r rin -r”at5 r on equatinlIc. 
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~eun iary Conditions

In the present Navier-Stokes calculations boundary conditions were
specified along all boundaries of the computational regime . At the  wall the
normal and tangential velocities were set to zero and a three point o n e - n i l e -h
difference form of the continuity equation was applied. At the upstream edge
of the calculation region both velocity components as well as the density were
specified. These values were determined by performing a calculation over a
region extending from a station slightly downstream of the plate leading edge
to a station slightly upstream of the location at which the interact;ion calcu]-a-
tion was to be in i t ia te-I .  This calculation yielded a flat plate boundary layer
solution that was consistent with the finite difference representation , turbu-
lence model and grid spacing used for the interaction problem. die profiles
calculated at the station having the desired bound ary layer thickness ‘~hen were
used as upstream boundary conditions for the interact ion calculation. At the
downstream boundary first derivatives of all dependent variables were set to
nero. Finally, both velocity componentsand the density were set at the outer
edge boundary. This boundary was taken at a distance of approximately five
boundary layer thicknesses from the wall. An oblique shock was assumed to
penetrate the boundary between the third and fourth grid points from the
upstream station. The values downstream of the shock were obtained from the
oblique shock relations.

The Nonuniform Grid

‘he accuracy of solutions computed with a given number of ri-i point s
often can be improved by using a nonuniform grid spacing to ensure ‘ba t grid
points are closely spaced in regions where the solution varies rapidly. In the
interaction flow field large gradients are present near the wall and sense-
quen ’ l-.~ fin e srid resolution is desired in this region. L’hic grid rc:nl,u’ i~ n
was n -tam e-i using an analytic coordinate transformation -Ie-:ice I ny i-~-he r’-s

~lof. 1 + )  which is a very effective means of introducin -~ a nomuniform sri when
‘-lie e’ cep sr a l i er ss occur near the computational boun,Iar i -’s . - ‘uppese tha t N
‘ri t ’ itt: are ~,i’ be use d in the range X1 ~ X ~ ~, and ‘-ha ’ s t e e r  , ‘r’t Iett.s
ar- ,- u ’ i c i p a t e I  in a rogion of thickness , B (x~ — x1) near X1. ‘hen Rot or s ’
tran sformation x,1,(x) is given by —

x T (X)
~ 

N + ( N - I )  n ( X + b c ) / I n ( b + a)  (L i )  

. - -~~~~~~~~~~~~ -~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
- -- -.-
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where a X , -X 1, b
2 a2/(l-B), and c x .  The use of equall- ;-npacn-t poin ts

in the transformed coordinate , X .  ensures an adequate resolution 0f both the
overall region X1 � X � X and the subregion X~ � X ~~ ~ (Xn - X1). 2 -rivatives
with respect to the physical coordinate , X , are obtained from the followirn’
formulas :

(~~~~
‘)ax - 

dX & X T 
-

j c l X-r \
2 A.~_ 

+ 
d 2 X i ...,~~~~ ( t ~ - ‘

)

ox 2 ~ d X  / OX T
2 dx 2 OX T 

-

~lie use of :, h irec— ~-’ x’: : 1  ‘f r n  -
~ p- -rat -r : f r  N r iva t i: s s  in ~qs. (3: ; ) and

(~‘- l4 )  pro los -s similar no r:s - r : :‘- -r N - r i v a ’ it ’s. - li~ s~ N- n-ri ;a tive  ni-orator :
can ne compute I at ’he -.’’ ar’ - -

~~
‘ a :al- ’-cla ’ ior. an . ore , aL-n : w ith  the N

locat inns of - r I  - -in ’

Tn th e pr c : ~’ e :‘f -r ra h e r  than use the P er -5r - r ;  rats :‘ r n ’ i - n  nv- -r t he
en. tim flow r- ’sino , the ‘ rats formation was used otis in the n i ci ni  t- - , - of -he
wall . Tm re ions  awa: ‘n m ’  - t ie wall an oquall;.~ spas- ’ I ri 1 wa- ’ use-i . - In - Wi -

r- ’ i s n s were ma cli - - u; r- - uiririg hat at. the j sin  I ctit S the r~h ;rsical : ‘p c it e
i~. tie ‘-r uns :‘nmro~ - - r- - P:, cc t h e  sane as the stop ci :c iii tire e 4-ua]J -

~
- race

re:imc . ‘hut ci o- nu T - :  of  the spacing was preser’-e I. It shnuL~ no t o ts-i  tha t
al houg h the me sh was - -en inuouc , it ,5 der ivat iv e  was not and an iIol-r (-v - - mccli
woul I j ( - l l l  the Resorts ms ’ion to the equally spaced resT en \-ia a transi ~inI -

r - -~ -i en.  I t  -wc -:or . t ft - mesh did not- seem to be :-hie cause of any numerical pr - ’~ —

1- ‘os an-r , Pt r - - for , - ti e two region mesh was leone i ah - -tuat ’ iPr the pr :- ‘n:
‘in ;. - -: i-:a’ ion: .

NeLlie -i of’ t’lti ion.

Exact ai~ai--tisal solutions of the Navit’r— dtrkt : -~n uat,ions are rare lii-’ to
tin-jr hi~~ii cr-icr ant couple t nonlinoari tv. dc a resul rnu s - ’r i  cal m t - t h e - b c  mus t
-

— -n ’raiJ_ i be omp lo :— t for LIne solo ion of’ ho n ’’ t -’ j l n u ’  i n , :. ~r: a-i -ti i ’ni . -nrc - : ‘

‘ lie maj or obstacles to l i r e  solution: 01’ h- - - ur- - -  — lIn t - r i - - ’ -  al - r r ~~rcc is1
Ta-si - -r_ , t-r- kes equations is t bi t -  m i ’  - - - Uflf l iL’~ ’ c,’ L’ 5 - n ’ i s -  r- - i i i ’  e :, lll t c-’n—
:equ en: tl : ~f’i ,si~ n t ‘er r-u a leiral t e t b i o l :  are Li dl - - I r a- 1- . ‘-Icc ’ - I - c - -ri sal

pr ‘s- - tin-s use I t o solve the Na , i’-r— P ‘ -k~ s - nna I - 
- - : a ’ : -  - - - ‘ n - ac - I on ~-xel I -

bif :’o ’ -ir c - scheme : P r  t~~i~ - ~ut :tca ,
- . ~‘ -r~. i t ’ I i  

~
-
~~~~~

‘ I -  o r  • an I ar-
cut -i- -ct .0 en ’  or nr°r - s a r i i ll ,- r~ ctrj;t ’n-n : t~ n t i c  cii’e - - ‘ ‘ l i i - ‘ j~~e ~~

‘ _ ‘ ‘~~‘

r-’la ’ I - -
- - ‘ e the  - : rat ial  mesh : 1:-i ’ (e . - , Pt - . 1~ 

I. 1 . - c -  c - ‘ r - i l l
l imi t s  usuall: c -rr-: pot e ‘ i i -  - w - l i — N I  r- ’i~~i ‘ - -uran - - — r I - :i’ I ‘Ii: — : - - -w ,  ( -  ‘ -- I - ‘ -n

‘i , i —
~~~ ru t  I in ‘em - r n ’  ‘ l i e - i t  ‘ n a n .  a- I I. t .i t i r t i  vi cc us c ’ - i i i ’  s t - n t  i -i ‘1 ‘ :. ,-\



- 

~TT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _____

key disadvantage of such conditionally stable methods is that  ~he maximum ‘~Trie
step is fixed by the spatial mesh size rather than the physical t ime iO~ cflitflCC .

If a steady solution is being computed as the asym ptotic limit of’ tb -s unstead j
solution, then using a small time step requires a large number of steps to reach
the steady solution.

In contrast to most explicit methods , many implicit methe- is tend to be
stable for large time steps , and hence, offer the prospect of substantial
increases in computational efficiency , provided of course that the computa-
tional effort per time step is competit ive with that of’ the conditionally
stable me t hods . An accura~e an-h efficient implicit method termed the I-liN t pro-
se-lure has been -leveloped at iG~-T by Briley and McDonald (Ref. 9)  for solut ioni
of the three-dimensional , compressible l-la-sder-Stokes equations. This proc - lure
since has been used for further s t u hi e s  of rectangular duct flow by drib :. ,
NcF-enial b and Gibeling (Ref. 10) and for three-dimensional combustor flow cal-
culations by -dibelinig , tlcDonai I and itriley (Re f .  L i) .  The 1-lavier-Stokes per-

ion ( I ’ the present s t u l y is ban-H upon a two-dimensional version of the hiN t
:0 . ~n cn n : ’, t i n s proco-Isire i’irst linearises t h e  equations by eXpa n d in g ‘he

.I lutien a a k~ rwr , time level , ni , to represr’nf: the so lut ion  at time 1ev’-! n 4- 1.
Tue resul t in :  linear equa 4 T o n s  are solve I using an alternating i i recr inn
I mplicit : (m i) metho-l. A decen t-ti c--n of this numerical proce lur-- is presente l
in Appendix D. I-tore Ietaiied descriptions are present- e l  in Refs . 9,  10 a n - i  1-H .

Results of’ wavier-Stokes Computations

Several sample cases were considered in assessing the ability of the MINT
code to make predict i-onc - V the clu ck wave -boundary laye r interaction flow
field . The shock impincemen ’ problem was considered herein since some
experimental data are avail r~~ (raw , Ref. 2b), and this problem has been
considered previously by othe r inve stigators (e.g., Refs . 2q and L~8), The flow
conditions upstream of’ t h e  in ci len t shock wave were chosen to correspond as
closely as possible to Law ’s experiment (Ref. 26). Incident shock waves of
strength p2/p1 = 2 (case 1, e -  = 27.L°) and p2/p1 = 3 (case 2, e~ = 33.8°)
were considered , where p1 is the r;tatic pressure upstream of the shock , p2 is
the static pressure downstream of the shock , and e 5 is the shock angle. The
former case corresponds approximately to the shock generator angle of 9.870
examined by Refs . 26 and ~~

~

- ..
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The flow field in the present analysis is divided into two overlapping
computational domains following the procedure used in Ref. 1ib . In the first
domain the turbulent boundary layer development over a flat plate was calcu-
lated . A 36xL~0 computational grid covering a physical domain of’ approximately

-‘ 55x603 was employed in the boundary layer calculation. The interaction region
is contained t~~~~ the second computational domain. For case 1 a 36x61 computa-
tional grid was employed for a domain of about 5E- x206, and for case 2 a
36x56 grid was employed for a domain of about 55x17e . A Roberts grid trans-
formation was used in the normal coordinate direction with 23 points in the
inner region (Aymin 0.006 3 mm), and 13 points in the constant mesh-spacing
outer region (Ay = 1.09 mm). The streamwise grid spacing in the boundary
layer calculation (first computational domain) was tn x = 5.6 mm , while in the
interaction domain the spacing was Ax = 1.22 mrs for case 1 and Ax l.l~ mm
for case 2.

In this feasibility study, computation times on a CDC 6600 were approxi - —

mately one hour per case to reach convergence. However , the cases were run
with a generalized code capable of perfor ming calculations both in three
dimensions and with orthogonal curvilinear coordinates and no serious effort
was made to optimize either the code or the time step for this particular
problem. If the code were rewritten to apply specifically to a Cartesian
system , it is estimated that the run times would be reduced by approximately -:
a factor of two. In r’~gard to optimization of the time step, in the limited
amount of time and effort available a detailed study concentrating on time
step optimization for this type of’ problem was not possible and a rather
conservative t ime step selected which doubtless did not take full advantage
of the large time step capabilities inherent in the present implicit
procedure . Finally, solution oscillations related both to the shock
representation and the turbulence model (which are discussed subsequently)
may also have increased the case running time . Based upon these initial runs ,
it is estimated that a streamlined Cartesian deck wi th  an optimum time step —

could perform an interaction calcilation in 15 to 25 minutes of CDC 6600 run
time with about 2200 mesh points. Finally, it should be noted that the present
calculations were run with a grid definition in the near wall region much
better than that usually used in stability restricted explicit calculations.
For example, the grid spacing in the immediate vicinity of the wall used in
the present effort was approximately one-fi fth of that- used by Shamp , Hankey ,

and Law (Ref. b~8).  This improvement, in grid -lefirition obtai,ne:I in the
present effort without an accompanying penalty in computer run time was made
porr ’-ible by the favorable r-trib ilit y properties of impLrit methods. In the
up r t ream boundary layer , the gri :1 employed In the present effort cent-sine I
two poin1s~ in the region y~< 7. Based upon our experience wit,h classit ’nn l
boundary layer no]si t-ions , one point is required inthe region y4 < 7 to c-htain
skin friction pre- liction s which are accurate to withIn 10 percent. 

- -
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The sample cases pointed out several deficiencies in the “shock capturing ”
treatment of’ shock waves. As noted by Shang, Hankey, and Law (Ref. 1414) there
is significant smearing of the incident shock wave in the relatively coarse
mesh which must be employed in a Navier-Stokes calculation . This shock
resolution problem appears to be more pronounced in the current implicit
procedure than it was in explicit procedures based upon IviacCormack ’s method .
However, this is not surprising since MacCormack’s method was developed for
shock calculatLoins over a period of many years, whereas the present work is
the 1’irst application of the MINT procedure to flow fields containing shock
waves .  The present results should not be construed as indicating an inherent
limitation of implicit schemes to resolve shock waves , they imply that at
tL - - stage of development they do not capture shocks quite as well as some
of the explicit schemes. Obviously, much further work aimed at applying
implicit techniques to shock wave problems needs to be done .

Plots of skin friction coefficient and surface pressure are shown in
Figs. 20a and 20o for case 1 (P2/P1 = 2) and in Figs. 21a and 21b for case 2

(P2/Pl = 3). Althoug h both experimental data as well as the explicit calcu-
lations of Shang, Hankey, and Law (Ref. 148) indicate separation under these
conditions , the present calculations do not. There are several possible
reasons for this discrepancy. First, as previously stated , the shock smearing
problem in the present implicit calculation appears to be more severe than in
explicit calculations performed to date. Secondly, a more sophisticated
turbulence model than that which was used may be required . Finally, in
comparison with the calculations of Ref . 148 , the present procedure had a much
better definition of the flow in the wall region . It- i s  not clear what the
effect of improving the grid definition in the explicit method would have upon
the explicit calculation results and , therefore , a direct comparison between
the present implicit calculation and the explicit calculation of Ref. 148 is
somewhat difficult . The experimental surface pressure distribution for case 1
is also shown in Fig. 20b , from which it is apparent that  the in it ia l  rapid
rise of surface pressure which accompanies separation is not predicted very
well by the present calculations . This seems to be directly related to the
smearing ci’ the incident shock wave and is be] ieved to be closely connected
with the lack of separation in this case.

Since the pressure ratio p2/p1 
= 2 case did no t- separate , a stronger

shock calculation having a pressure ratio of 3 was consi-lered. An; shown i n

Fig. 2lb , the shape of the predicted pre ;:;ure rise showed the rapid ini t ial

increase expected in interaction flow fields . Furthermore , the level of’ the

iownstream wall prescore was essentially the i r n v i ; c i - l  value. The p r e d i c t  ~ - 1

length of’ the sepa rated region was shorter than expect-e l , a r e su l t ,

eoni ;ist.ent with the lu- ’k of separation ( b served i n  1-h .- p r e s s inr - rat -u - ~- D ; P j  2
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calculation. Finally, the skin friction distribution in the separated case
(Fig. 2la, P2/pi = 3) is also qualitatively reasonable , although the m en-ont o

in skin friction downstream of the incident shock was unexpected. Thi s may be
due to the turbulence model incorporated in the present procedure.

Several problems have been encountered in the present study which require
further investigation . First of all, shock resolution in the implicit frame-
work must be improved , since the resolution obtained with the present formula—
tion is apparently not as good as that obtained using MacCormack ’s alternating -

direction -explicit method (e.g., Refs. 29 and 148). Also , some oscillation of’
the solution about the steady-state has been observed , especially in the sub -
layer. This problem may be partially related to both the turbulence model and
the choice of time step. Further investigation into the optimal choice of
the time step for this implicit procedure should be carried out , since i t  is
believed that a significant improvement in the convergence rate can be
realized. Finally, the present calculations were obtained using primitive 

2variables (o, u, v, h) rather than conserved variable:; (p, Pu , Pv , p (e +

which may have resulted in additional smearing of the incident shocic wave.
Hence, in future studies consideration should be given to using conserveJ
variables . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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SECTI ON III
CONCLUSIONS

BOUNDARY LAYER ANhLYSIS

The strong interaction boundary layer approach has been applied to the
shock wave turbulent boundary layer interaction problem. A well proven
weak interact ion boundary layer procedure was modified to allow for strong
interaction solutions. The modifications included the incorporation of’ an
outer flow analysis and the revision of the governing equations to allow for
flow in separated regions. When the turbulence model originally developed
for weak interaction flows was used, poor agreement was found between the
calculations and data. This is consistent with the results reported by Shang,
and Hankey (Ref .  147). Based upon computat ional turbulence studies and recent
experimental data, a modification to the basic turbulence model was developed

~‘o~’ boundary layers containing recirculat i ng flow. UsIng this modified tur-
bulence model, good agreement was found between the calculations and test
data.

NAVIER -STOKES ANALYSIS

An implicit finite-difference Navier-Stokes analysis has been applied to
the shock wave-boundary layer interaction problem. Despite the fact that the
code was written in general curvilinear ccordinates and was not streamlined
for the interaction problem , solutions were obtained in reasonable run times .
Indications are that streamlining the code and optimizing the time step could
decrease the run t ime by a factor of four . Although solutions for strong
incident shocks showed a qualitatively correct behavior (i.e., skin friction
and wall pressure distributions were in qualitative agreement with data), the
procedure severely smoothed the incident shock wave thus suppressing
separation for moderate shocks and underpredicting the extent of separation
for strong sriocks. Therefore, calculation of shock waves in an implicit
method requires further invest igat ion.  In addition , further work in regard to
turbulence modeling and optimum time step specification is warranted .
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APPENDIX A

WEAK INTERACTION CALCULATION PROCEDURE

The procedure used to solve the momentum and ener~ r equations is a
Hartree-Womersley calculation procedure similar to that described by Smi th
and Clutter (Ref. 50). In the calculation procedure the differential  equa-
tions are trans formed to a fonn more convenient f’or computer solution by
int roduc H , ’ new variables

‘7 (A-l)

p~U 
(A-2 )

Pe Ue
r O f O

_ _ _ _G 
~~~T O  , (A—3)

- REF

(A~~~)

wT i -ro the primes indicate differentiation with respect to ‘11 , T° is the
cta ’riat h,ri temperature , ~~~ is a specified constant reference temperature,
and 44. is a length scale usually taken to be the displacement thickness. In
certain flows , such as the boundary layer developing on the cold wall nozzle ,
the displacement thickness may become small or even negative and in these cases
8~ is taken to be a linear combination of the displacement thickness and a
constant reference length such that Ô~ remains positive.

The momentum equation , Eq. (n ) ,  and the ener ~y equat i on , Eq. ( 10) ,  are
solved by t’irst eliminating ~~ through the continuity equation , Eq. (3),
and replacing the variables T° , p , and u by C , F , and A . The strearnwise
derivat ives are then replaced by f ir i t e  d i f to r e n ce s  leading  equat i ons of
the form

43 F
IU
+ 

~ 2 F ” + A ,  F ’+ 
~~ 

F :  4 4 (A- -~

83 G” + B2G ’ 
+ B , G ’~ 84

where An and B0 are functions of’ F, and the ir •1-riva t ; i ves. P.- equatH on:
- Li near i se I by as suming values for F , ii

’ and t in - i r - i t -n  vat i v - - c  i a - t i  upon
in solution at tin - : -r- -v i  ens t-reamw i se s ta t io n s  ansI  H - r -so 1 ’ - n i -  -

- 1 nt -ar cii

‘ - -r ent  ‘ii -qua t .i ens an- solved by ~a nnc - c  i an  ci m l  sa t j o i n  Oc t 
~I - ’ ‘ i-

s-en d inns

F ’(O) : pw Uw (. 7)

~~~~ 
Li e

~

~, 
~~~~~  -~



F ’(S) :  0 (A -8)

I

G ’(O) 0R G ” (0):0 (A-9)
- REF

0 (A l0)

where ô~1’jj is the thickness of the thermal boundary layer. In the calculations
presented in the present report, uw was always taken as zero. Having obtained
the solution of the linearized equations, the distributions of F and C ’ are com-
pared to the distributions used to evaluate the nonlinear coefficients, An and
B~. If the old and new distributions agree to within a specified tolerance,
the procedure moves to the next streamwise station. If the two do not agree,
the procedure is repeated. In the case of turbulent flow, the coefficient s
A0 and Bn~ also depend on the turbulent kinematic viscosity, -~~~~~, and a turbu-
cince kinetic ener~ r equation is included in the iteration loop.
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APPENDIX B

BOUI’~DARY LAYER MODIFICATIO NS FOR 5* SPECIFIED

To specify the displacement thickness , ~~~~~ , and eva luate the static
pressure from the momentum equation, a relation containing 5* was derived to
replace the pressure gradient terms in the momentum equation. A parameter ,
Q, was introduced to represent the naturally occurring term:

~~~ (‘e~ e 8 )  (B-i)

Q, was then treated as one of the dependent variables and terms containin,-
products of Q and other dependent variables were linearized in the usual
manner.

From isentropic relations it can be shown that

U e

~~ (y—UC ~ T~ ~~ (~ -2)

Expanding the defini t ion of Q yields

Q~~u 8*~~~_ + 8 *2 ( I_  
Ue

2 
~~~~ (p-3)e ox ( y ” I ) C pT~/ Ox

Solving for

(~~-14~

wh i ch is of the linear form:

(B-5)ôx

Whom s~ eci fy inni - the displacement thickness , ~~ T1 and T2 in Eq. ( B — 5 )  are
- v a l ’ n a t - I  and th e  l inear  r e l a t i o n  in Q Is ui;ed to replace tue /~~x ~ fl the pros—
siii’n -oa i icnnt terms of the moinientum - -q na~ i on.
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The momentum equation is solved for the ~* specified c&t,e by linearizing
the partial differential equations and replacing derivatives by ~if’f’erences
at each grid point. The resulting set of algebraic equations i~ then solved
for the value of the stream function, F, at each grid point and for the
parameter Q. The solution is obtained by a modified Gaussian elimination
which solves a quin-diagonal matrix with an additional column.
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APPENDIX C

ORIGINAL TURBULENCE MODEL USING THE TURBULENCE KINETIC ENERGY EQUATION

As shown in Ref. 146 , the boundary layer approximation to the turbulence
kinetic energy equation is given by

a — -
~~~~~~~ 0 — r ~

~~~~~~~~~~~~~~ 

pu~~ ) +  -

~~~~~
- ( - .

~~
-- pv q ) - - p  u v

ad vection product I

- (P’ v ’ + 
-

~~~~ 
( p v ) q 2 )  - 

(c-l)
diffi~aiOD dt ssipatton

— ~~~ ~~2 O~ Ip (u - v  ~~~ + P  -
~j --

~or~al atr~sa ro duc tion pres eure -di lita t lon
All calculations reported in the investigation were made with the usual
assumption of zero pressure-dilitation contribution to the energy balance
(Ref. 8) unless otherwise stated. The turbulence model is developed by
integrating Eq. (C-i) with respect to y between the limits y = 0 and y =

which leads to

8 — 8 — ~~~~
— S

-

~~ ~~ 
f  q 2 dy - U ’ V

1 

~~~~~ 
dY Edy

8 — — — (c -2 )

—f ~~~ 
(u ’ 2 

- v
2 ) -~f dY + / P + E

where

E : { +  q 2 ~~~~~~~ ~~~~ P’ v ’ 
~~~~~~ 

(p v) ’ q 2] ~~~~~~~~

Foil -wi ng Townsend (Ref. 148) and Bradshaw and Ferris (Ref .  8) structural
coet’t ’i ci -~:nt s a0 and L are introduced , together with a mixing lciigtii £ ;
‘nit se scales are def’ined as

- —
~~~~~

- 
-~ _7

~ 
-

~~~- U
’ V a , , U~ 

- 

~~~2 
q , V a~ q

w~~~( I _ a 2
_ a 3) q 2

____ 
____ 

(c- 14)- - 3/2 , i/2
= ( -  u V I /L , ~~ ~ 

) = I

For f’ully-developcd turbulence the structural coefficients a1, a ,, and
are assumed constant having values 0.15, O.H , and O.~°, recp -ctiveiy (T~efr .
7 and 31). Using Eq. (c~1~) ,  Eq. (c-~) is put in the i’onn 

-

~~~~~~~~~~~~ 
~_~)+f

8 
P ’ dY (c_5 )
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where

~~~~8/8 

(it- Ou/u
e)

2
d (c-6 )

~ / 4 \ 2  / Oti /ue ~~~3/  .1 ~4 2  J0 ~~~~~~~~~J I~ ~~~~~ ) ~ 

(c-7 )

~O / O~~~~O 3\ / 4 O~/~~~ B (c-8)
~~~~ 

‘

~~~~~~~ ~, 
0 

1 
yr Oi~ ) 

•
~T Ox d~1

where ~) is a nondimensional transverse distance y/84’, ~~
‘ is an arbitrary

reference length, and 8 the boundary layer thickness.

The left-hand side of Eq. (C-5)represents the streamwise rate of change
of turbulence kinetic energy and is derived directly from the turbulence
kinetic energy advection term. The term Peu~

ø2 represents the integral of
turbulence production minus dissipation and Peu3e~3 

is the normal stress 
~~~~~°

duction. The terms designated by E are turbulent source terms resulting from
disturbances imposed upon the b oundary layer by the free stream. As shown in
Eq. (C-3 ) , E is the sum of two major contributions , the first (q2/2)(~~~8/~~-~~)
representing the free-stream velocity disturbance 4i.e., free-stream turbulence
entrained by the boundary layer) and the second, P v’ + (pv)’q~/2, representing
the direct absorption of acoustic energy.

For fully-developed turbulent flow, as in Ref. 31, L and £ are given
by

* 0. I  tonh [ Ky / 0 . I 8)]

tonh [~ y/ .L~J (c-lo ’i

where £~ is the “wake” value of the mixing length at any particular streamw i ce
station. Although Eqs. (C-9)and (C-b ) give accurate representat i ons of L and
L through mos t of the turbulent boundary layer , it is well-known that- they
overestimate the length scales wi th in  the viscous sublayer and are somewhat
inaccurate at low Reynolds numbers . Followi ng McDonald and Fish (Ref .  ~~I
the experimentally observed damping effect in the viscous m u m : .  is mo d e l . - !
by assuming intermittent t urbulence within the sublayer lo ad In~ to tine relat i on

_____ 
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In. Eq. (c-6 ) r’ is the intenuittency factor , 7~ the damping factor, and the
subscript T indicates the value with turbulent flow. Obviously, .2 is
equal to the square root of F. As in Ref. 33, the present investigation
assumes that the damping distributes normally about a mean height y~(y~=
y,,-

~7~7v) 
with a standard deviation ° leading to the equation

= ~~I/2 {(y —
~~~~~

+ )/o } (c 12)

where P is the normal probability function; ~~ is taken as 23, and ° as 8.
A detailed discussion of the sublayer damping treatment is presented in Ref.
33. In the present calculations the von Karman cons tant k was taken to be
i i1 3

In regard to the low Reynolds number effects, Coles (Ref. 12)has observed
and correlated the departure of the mean velocity profile of a flat plate
turbulent boundary layer from the usual similarity laws known to hold at
higher Reynolds numbers. Using Coles ’ correlation of the mean velocity pro-
file in the low Reynolds number regime, McDonald (Ref. 31) integrated the
boundary layer equations of mean motion to obtain local distributions of
turbulent shear stress and evaluated the local mixing length distributions
from the assumed mean velocity distribution and the computed shear stress
distr i bu t i ons . Based upon these calculations, a low Reynolds number correc-
tion for the diss ipat ion length of the form

= LO0 { I  + exp ( -  I 63 In + 9 7)]  (c-13 )

was- derived where i~~/6 is given by Eq. ( C -9) .  In the calculations presented
in the present report the dissipation length used was obtained by multiplying
- q .  ( C -b 3 ) by  the sublayer damping factor , .2.

W’inc-n n numerical values of thc structural coefficients a0 are specified ,
Eqs . (C-b ). (C-12), and (C-13) are used to represent L andL, and the pressure
dilttat ion is .ither neglected or nodeled, the turbulence kinetic energy

- - -lua t ion , q. (c- ) ,  becomes an ordinary differential equation with the depen-
dent param - -~-or &~( x l  which is solved in conjunction with the boundary layer
momonnti nm n an.I - -niergy equations to predict the development of both the mean flow
t i  o LI an n I t-~ n e nr i  nu t  cnt shear stress.

In a - i t i t I - n: n ’  : - ~l iu - ! i n s -  t t n o  t;urbulence k ine t ic  cnierc~’ equation in the
s e t .  or o l u a - ion s - v - - r n .  n: .~ the boundary layer development it is necessary
t o  ~ n .ic 1 t” r - n n:n ei. ’l t .  -r t -us :nJ - n n t -  heat flux con t r ibu t ion , ~~~~~~~ As pr o—
v ’: ~~~ c ’ ut - - - t . i n . t in e n - -st ~-r- .c. -d ur s , v ’T’ is specifi ed by a~’sumlong a
- nc: J t - ! t. i : ’a: n - i n  ~‘ .n ~, r- - ’ wIn i ch n’ei at - .-c tine veboci t-y—t emperature corre—
j~~ ion ., .

- ‘
~~~~~

‘
, t -- t - h - - ~~~~~~~~ st - co n s , u ’ v ’ , t~1nro u:In E i .  (ifl . The turbulent
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~~
andtl nn - ~rnuber distribution used in the present procedure varies with distance

from the wall in the manner suggested by Meier and Rotta (Ref . 35). As this
juncture it should be pointed out that an alternative procedure can be used
to determine v ’T ’ , based upon an easily derived conservation equation for
either the quant i ty T’2 or the correlation, ~~~~~~~~~~~ which is similar in form
to the turbulence kinetic energy equation , Eq. (23).  However , to solve
this new conservation equation it is necessary to assume a universal struc-
ture relating quantities analogous to dissipation, production, etc. While
sufficient experimental data exists to allow valid modeling of tine required
terms for the turbulence kinetic energy equation, the existing data does not
indicate how proper model i n —  could be carried out for the v’T’ conservation
equation. Thus , at least for the I res ont , the approach based upon a turbu-
lent Prandtl number appears nreferal-lcn to an approach based upon the v ’T’ con-
servation equation.
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APPENDDC D

THE MIM CALCULATION PRCCEDURE

The MINT calculation procedure represents an efficient solution to the
multi-dimensional, time—dependent Navic-r-Stokes equations. The procedure is
presented in detail in Ref a. 9, 10 and 113; for convenience it is presented in
condensed form in this appendix. As a prelude to this discussion it is con-
venient to define a difference notation. For the present it is assumed that
the flow region is three-dimensional and is discretized by grid points having
equal spacings ~ x1, ~ x~ and ~ x~ in the x1, x2 and x3 direction s respectively ;
in addition the time step is ~t. Reduction to two dimensions will be obvious
as the discussion proceeds and provisions for nonuniform grids will be intro-
duced at the end of this appendix.

The subscripts i, j ,  k and superscript n are grid point indices assoc iated
with x1,  x2, and x3, arid t , respectively . Thus denotes ~ (x 3j , x2~~
x3k, t~ ) where ~ can represent any of the dependen~~’~a.riables. The subscripts
are frequently omitted if clarity is preserved , so that ~j ’ is equivalent to

~~~j ,k. For convenience , the following shorthand difference-operator notation
is used for derivative difference formulas:

+ O (Ax 1)
2 

(D—1)

8
2 ~,n i.k - 2 ~~~I~~~k~~ ~~s . 1 l , k 

~~~~~~~~~ + 
~~~~~~~~ (D-2 )

Ox 2 
, j , k I

with analogous definitions for 82, 6~ , 63 and ô~. ~t is assumed that  the
solution is known at the n level , tn , and is desired at the (n+1 ) level ,
t n+l .
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LINEARIZATION

The large time-step capabilities of implicit method s can place great
demands on the linearization technique employed. Indeed , the favorable
stability properties of implicit methods can be severly compromised by an
inadequate linearization. The technique used in the ML’~T code permits the
implicit solution of coupled nonlinear equations in one space d imension by
a one—step noniterative procedure. This feature is retained for multidimen-
siona.]. problems by using ADI techniques. The linearization is accurate when
variables change by relatively small amounts during a time step, and conse-
quently, the accuracy of the linearization can be controlled by varying the
time step. The linearization technique is also convenient for the implicit
treatment of coupled nonlinear boundary conditions, and this latter feature
h~.s been found to have a highly favorable effect on the stability of the over-
all method (Ref . 9).

‘ or lemonstration purposes the technique now will be described for the
f allowing first order equation in one spatial var iable , ~ (x , t )

F( c ~~) (3 @ )  (D-3)

The procedure is based on an expansion of nonlinear implicit terms about
the known time level, t~ , and leads to a one-step, two-level ccheme which,
being linear in unknown (implicit )quantities , canbe solved efficiently without
iteration. The technique is easily extended to treat coupled systems of
equations and second-order spatial derivatives. The difference approximation
is derived from the following backward time-difference replacement of Eq..
(D-3)

4, f l + I  ~4~ fl f l • I
— 

F(4 ’ )  ±— G (4 ) + o (i~ t )  (D- )-n )
M Ox -

‘

where the spatial differencing of the bracketed term is as yet unspecified.
Making use of chain-rule differentiation , the bracketed term in Eq. (D-14 ) is
expanded about t

T’l
; the result is then differenced using forward time differ-

ences and centered spatial differences to obtain the following implicit differ-
ence scheme :
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On examination, it can be seen that Eq. (D-5) is linear in ~~~~~ and that
all other quantities are either known or evaluated at the n level. Because
of the spatial difference operator , 6)(~ Eq. (D-5 ) contains 

~~~~~~~~~~~ ~~~~~~~~~~~ and

~~j~~; consequently, the system of linear equations generated by writing Eq.
(D-5) at each of the grid points , x1 , must be solved simultaneously as an
implicit system . The implicit system of equations can be written in
tridiagona]. matrix form, and can therefore can be solved easily and efficiently
by standard techniques for tridiagona.l systems (see, e.g., Ref. 23). The
tridiagonal matrix structure emerges from writing Eq. (D-5 ) in the following
form:

0 f l + J  fl f l + I  fl 0 .1  fl
4~— + b 1 4~ +C~ 4~~~ :d ~ (D-6)

where the coefficients contain only n-level quantities . When applied at
successive grid points, Eq. (D-6) generates a tridiagona.], system of equatiorns
for

APi’LTCA H I! OF TFrFI METHOD

The extension of the numerical method to more Jcun one spatial dimension
is based upon an alternating direction implici t  (API )  t e ch n i q u e . The technique
is an application of the general procedure developed by Douglas and (unn
(Ref. 15) in which the linearization technique described previously Is app lied
to the coupled system of governing equations , Eqs. (2L4 ) - ( H f) .

These equations are wri t ten in backward t ime  difference form , and non-
linear implicit terms are linearized by expansion at-eut  t~~~~~~. Tine viscous
force terms in Eq. (25) which contain mixed deriv atives (i.~- ., ~~~~~~~~ -

~~~~~~~ 

for
I ~ j )  are most easily treat  explici t ly by evaluation at time level n.
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Although mixed derivatives can be differenced implicitly within the Douglas-Gun n
framework, this would increase the number of intermediate steps and thereby
complicate the solution procedure. Previous experience with the method in
Refs. 9, 10 and 18 indicates that the explicit treatment of these viscous
te rms had no observable effect on stability.

The difference equations obtained by the procedure outlined above repre-
sent a linearized backward difference scheme. The equations can be arranged
according to time and space derivatives, and wri t ten in the following matrix
operator form (Ref. 9):

= n ~~~f l . I  = f l f l+ I  (D-7)

=n
Here A is a (mxm) matrix containing the time derivative coefficients, where
m is the number of equation s being solved ; ~ is the column vector of the depen-
dent variables; D1, ~~~~~~, and P3 are (mxm) matrices containing three-point dif-
ference operators associated with the coordinate directions x1, x2, and x~ ,
respectively; and S is a column vector containing only n-level terms. Since
the multidimensional implicit system with coefficients g- n -ra’ od by i d .  (D-7)
is d if f i c ult to solve , the Douglas-Gunn (Ref .  15) technique is ap~ li~ to
Eq. (P-7) to generate an ADI scheme . With the obsc- r .  tion ~hat t in e i~cugla:-
dunn procedure is being applied to a coupled system cr t- - lU ~I t i n r -S , the ~~- llc-v-
ire - three—step scheme is obtained. (For two spat ial  ~i m c -n i s i c x n s  the t~-~’hi~iciu--
collaps- - -s into a two-step scheme.)

(

~~~*~~~~~~f l )  D1 4> + D2 + D3 + (D-8 )

~~~~~~~~~ 
~~ c+ 5r~ 4’ +D 3 4’ + S  (D-o)

~~~~

(

~~~* f l )  ~ ~~~~ -fl~~~~~~ ~~fl (n-i -)
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_*~~~~~~~~~~ ~ —where ~~ , , and ~ are the intermediate solutions. Note that at each
step of the scheme, one more coordinate direction is treated implicitly, and
that the most recent approximation to ~ is not always used , as this would
adversely affect the stability.

The effort involved in the actual programming and solution of Eqs. (D-8) -

(D-lO) is greatly reduced , and the computer storage requirements are halved
by sub t r act i nr  Eq . (D-8) from Eq. (D-9) and Eq. (D-9) from Eq. (D-1o), so
that Eqs. (D-9) and (P-b ) have the following simplified form :

_*s — *
. .n (4 > 4> ):~ (~~ a*~~~~n) (D-ll)

—.** —* *

14 > — 4 > =n I ’ ’ ~~~ ~~~~~A 
~~ 

_ J :D 3~4) -4 >  (D-l2 )

-***

For ~hree spatial dimensions ~ represents the solution at time (n+l),
for two spatial dimensions Eq. (D-12) is eliminated and ~~ represents

the solution.

On examination , it can be seen that the difference equation s (~ —8 ) ,  ( D- l l ) ,
(D—l2 ) are linear in the *_level quantities. At the kth step in tl~e proced ure
there are m equations at each g~Id point (x1, x2, x3); because of the spatialdifference operators ( 8 k and 5k ) these equations contain the dependent vari-
able s at and at each of the two adjacent grid points in the xk-direction .
Consequently, the difference equations must be solved as an implicit system .
It should be recognized that upon application at a successive number of rrid
points , x k, each(~~~uat ion genera1~~ a blo~~_tridiagonal system of algebraic
equations for ~ (i.e., ~~ , , or 0 FOR K = ~~~, 

~~~
, 3) .  After aj~pro-

priate treatment of boundary condition s , each system can be solved efficiently
-is inr  ~i standard block elimination method such as the matr ix  fac toriza t ion

- th  . Lhi- me he- us - - in L In c re cnn L Lu - i t  c~~~1 - c  — - 1,- r - - 1.: ‘ - -i Ii - -

:na -r ix  ac t er i zat ioxn  rm-t -Inod an~ si~ n~-l , ’ c (ensi~ t-s - R U .e~ ia1 : clia i i t ’ -~ c n n  -5

a Lridta~’’cnai matrix , -u where the -i -ninent-~’- Inc r i  -nab ma r i  y are
(mxm) ~‘ul)nna r ices ra t  ln - -r ~l n n u n  s- ’aiar , ’ where m 1: Lii  n ase -r r - 

‘ iU’~~-i ~n 5
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The solut ion procedure for a single time step is as follows :

(1) During the first step of the ADI procedure , Eq. (D-8) is applied at
successive x1-direction rows of grid points to provide one-dimensional
implicit systems of equat ions. These systems are generated by the
operator (A’~/t~t_~~). The implicit systems can be arranged in block-
tridiagonal form and solved as indicated previously. Since there
are m govern ing equat ions , the block-t r idiagona.1 systems have
(mxm) square ma~ rices as the block elements.

Although this discussion has assumed the grids to be uniform, extension
to nonuniform grids ~s straightforward. When a Roberts transformation is
used (sec Eqs. (1-i.i) - 

~~~
-
~) ) ,  the ~irst and second derivatives for unequally

spaced grid points still be .d to three point difference operators. Thus the
resulting form of the matrices is unchanged a.nd the solution procedur e is
id~ ntical to tha t used for the equally spaced case.

- -  - - - ~~~~~~~~~ --~~~ --~~~~~~- -~~~~~~~ -~~~-- - -  -~~~
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